今回は高校数学Ⅰで学習する『二次関数』の単元から
分数でくくるパターンの平方完成について解説していくよ!
次の式を平方完成しなさい。
$$\LARGE{y=\frac{2}{3}x^2-2x+3}$$
こんなやつだね。
分数が出てくると解けなくなっちゃう人が多いから
今回の記事を通して、しっかりとやり方をマスターしていきましょう!
スマホでご覧いただく場合には、数式が全表示されない場合があります。
その場合には数式を横にスライドしていただければ表示されるように設定しております。
今回の記事は、こちらの動画でも解説しています(/・ω・)/
動画の資料はメルマガ講座の中でお渡ししています。無料で登録できるのでこちらからお願いします^^
平方完成の基本的なやり方
まずは平方完成の基本的なやり方を確認しておきましょう。
例えば
$$\LARGE{y=2x^2+4x+3}$$
この式を平方完成してみましょう。
平方完成の手順
- \(x^2\)の係数で、\(x^2\)と\(x\)の項をくくってやります。
- \(x\)の項の係数を半分にして、その数の二乗を引きます。
- くくっていた数を分配法則で計算してやれば完成!
このような手順で平方完成をしていきます。
それでは、分数が出てくるパターンの平方完成を上の手順に沿って解いていきましょう。
分数でくくる平方完成の解き方
$$\LARGE{y=\frac{2}{3}x^2-2x+3}$$
まずは、\(x^2\)の係数である\(\displaystyle \frac{2}{3}\)でくくってやります。
$$\LARGE{y=\frac{2}{3}(x^2-3x)+3}$$
このような式ができあがります。
おいおい…
分数でくくるの難しいんだけど。
そこんとこもう少し詳しく教えてくれいや
確かに!
分数の平方完成が苦手な人は
この部分で間違えている人が多いですからね(^^;)
分数のくくり方を詳しく説明しておきましょう。
くくりだすという計算は割り算です。
式変形したいところを
くくりだす数で割ってやればOKです。
分数だと暗算が難しいので
わり算の式をちゃんと書いて計算してやれば大丈夫!!
いやぁ…分数の割り算は嫌だな…という方は
通分を利用して、くくりだしてやることもできます。
このようにくくりだしたい部分を通分してやると
式変形がしやすくなりますね。
分数のくくりだしができたら
\(x\)の項を半分にして、二乗を引きます。
半分にするというのは、\(\displaystyle \times \frac{1}{2}\)をするということですね。
最後に、分配法則を利用して計算してやりましょう。
$$\Large{=\frac{2}{3} \left( x-\frac{3}{2} \right)^2-\frac{3}{2}+3}$$
$$\Large{=\frac{2}{3} \left( x-\frac{3}{2} \right)^2-\frac{3}{2}+\frac{6}{2}}$$
$$\Large{=\frac{2}{3} \left( x-\frac{3}{2} \right)^2+\frac{3}{2}}$$
少し複雑な式変形にはなりますが
このように分数の式を平方完成することができます。
やり方がわかったら
演習問題を通して理解を深めていきましょう。
演習問題で理解を深める!
次の二次関数を平方完成しなさい。
(1)\(\displaystyle \Large{y=\frac{1}{3}x^2-\frac{4}{3}x+\frac{7}{3}}\)
(2)\(\displaystyle \Large{y=-\frac{2}{5}x^2+4x+2}\)
分数でくくる平方完成 まとめ
お疲れ様でした!
分数の平方完成は、くくりだしが上手くできるようになれば
あとは、丁寧に計算していくだけで解くことができるようになります!
このようにわり算を丁寧に計算しながらくくりだすか
通分を利用すれば暗算でもくくりだしができるようになります。
自分に合うほうでやっていきましょう。
私は通分でやるのが好きです。
こっちの方がミスが少ないような気がします(^^)
たくさん演習問題をやってみて
確実に平方完成ができるようになるまで頑張っていきましょう!
ファイトだー(/・ω・)/
- 一次関数の定義域、値域とは?問題の解き方を解説!
- 頂点の求め方、公式は?問題を使ってイチから解説!
- 平方完成!分数でくくるパターンの問題の解き方を解説! ←今回の記事
- 平方完成!文字を含む式の場合は?やり方を丁寧に解説!
- 二次関数グラフの書き方を初めから解説!
- 二次関数の式の作り方をパターン別に解説!
- 二次関数を対称移動したときの式の求め方を解説!
- 平行移動したものが2点を通る式を作る方法とは?
- どのように平行移動したら重なる?例題を使って問題解説!
- 二次関数の最大・最小の求め方をイチから解説していきます!
- 場合分け!最大最小の応用問題の解き方をイチから解説!
- 2変数関数の最大・最小の求め方、パターン別の解説!
- 二次関数の文章題!高校で学習する問題をパターン別まとめ!
- 分数、小数、ルートを含む二次方程式の解き方まとめ!
- 高校数学で学習する連立方程式の解き方まとめ!
- 文字係数の方程式の解き方まとめ!
- 判別式Dを使って解の個数を調べてみよう!
- 2次方程式の共通解、kの値の求め方はどうやる??
- x軸との共有点、グラフの位置関係を考える問題を解説!
- 係数の符号の決定、グラフから符号を決めるポイントを解説!
- x軸から切り取る線分の長さの求め方と公式!
- 放物線と直線の交点の求め方!
- 二次不等式の解き方を簡単に!高校数学をマスターしよう!
- 文字係数の2次不等式の解き方!場合分けの考え方は??
- 解からの係数決定!グラフの形と座標に注目せよ!
- 絶対不等式!パターン別の例題を使って解き方を解説!
- 2次方程式の解の存在範囲!判・軸・端の条件を見極めるのが重要!
- 4次不等式の解き方を例題解説!
- f(x) > g(x)となる範囲「すべての」「ある」の違いを理解しておこう!
- 絶対値のついたグラフを書いてみよう!
コメントを残す