【素因数分解】ある自然数の2乗になるためには?何をかける?わる?

今回解説する問題はこちら

54にできるだけ小さい自然数\(n\)をかけて、ある自然数の2乗にしたい。このとき、次の問いに答えなさい。

(1)自然数\(n\)を求めなさい。

(2)どんな数の2乗になるか答えなさい。

中3の展開・因数分解の単元で出題される問題だね。

よく質問される問題の1つだから

この記事を通して、少しでも理解が深まると嬉しいです(^^)

 

素数ってなんだっけ??という方は、こちらの記事で復習しておいてくださいね!

>>>【素数とは何か?】小学生にも分かるように説明!

 

今回の記事は、こちらの動画でも解説しています(/・ω・)/

 

 

ある自然数の2乗とは

まず、問題文にある「ある自然数の2乗」とは何なのかを理解しておきましょう。

ある自然数の2乗とは

$$5^2=25$$

$$9^2=81$$

$$12^2=144$$

25、81、144のように自然数を2乗してできあがる数のことを言います。

 

つまり、問題では

54に何かを掛けて、出来上がった数が25、81、144のような自然数を2乗することによって作ることができる数にしなさい。

という意味なんですね。

 

そして!

ここが非常に大切なポイントなのですが

$$25=5^2$$

$$81=3^4=3^2\times 3^2$$

$$144=2^4\times 3^2=2^2\times 2^2\times 3^2$$

このように

ある自然数の2乗によってできあがっている数は、素因数分解をするとすべて、2乗の掛け算によって表すことができるんですね!

 

このことを使いながら問題を解いていきますので、よく覚えておきましょう!

問題の解説!

それでは、問題の解き方を解説していきます。

54にできるだけ小さい自然数\(n\)をかけて、ある自然数の2乗にしたい。このとき、次の問いに答えなさい。

(1)自然数\(n\)を求めなさい。

(2)どんな数の2乗になるか答えなさい。

(1)の解説

まず、54を素因数分解します。

$$54=2\times 3^3$$

そこから、それぞれの素因数を使って2乗のペアを作ります。

$$54=2\times 3^3=3^2\times 2\times 3$$

すると、2と3がペアになれずに余ってしまうことが分かりますね。

 

全部が2乗のペアになれば

その数自体も何かの2乗によってできた数ということになります。

よって、あと2と3が1つずつ必要だということが分かります。

 

だから、2と3を1つずつ掛けてやればいい!

つまり、\(2\times 3=6\)を掛ければ良いということになります。

 

これにより(1)の答えは6です。

(2)の解説

(1)より、6を掛ければ良いことが分かりました。

そして、6を掛けることにより

$$54\times 6=3^2\times 2 \times 3\times 6$$

$$=2^2\times 3^2\times 3^2$$

$$=(2\times 3\times 3)^2$$

$$=18^2$$

 

よって、出来上がった数は18の2乗であることがわかります。

 

これにより(2)の答えは18です。

わり算パターンも同様に!

240をできるだけ小さい自然数\(n\)でわって、ある自然数の2乗になるようにしたい。次の問いに答えなさい。

(1)自然数\(n\)を求めなさい。

(2)どんな数の2乗になるか答えなさい。

わり算をしなさいというパターンでも同様に考えていきましょう。

まずは240を素因数分解して、2乗のペアを作ってやります。

$$240=2^4\times 3\times 5$$

$$=2^2\times 2^2 \times 3\times 5$$

すると、3と5が1つずつ余りモノになることがわかりますね。

 

よって、\(3\times 5=15\)を割ってやれば

すべて2乗のペアだけにしてやることができます。

 

そして、15で割ってやると

$$240\div 15=2^2\times 2^2 \times 3\times 5\div 15$$

$$=2^2\times 2^2$$

$$=(2\times 2)^2$$

$$=4^2$$

 

よって、15で割ると4の2乗になることが分かります。

 

以上より

(1)の答えは、15

(2)の答えは、4となります。

まとめ

お疲れ様でした!

ある自然数の2乗にしたいという問題では、素因数分解を使って2乗のペアを作ってやることがポイントです。

2乗のペアになれず、余りモノになってしまう数を見つけてやることができれば問題は簡単に解くことができますね(^^)

 

やり方を覚えておけば、なんてことない問題です!

ぜひ今のうちにマスターしておきましょう(/・ω・)/

 

 

【中3受験生へ】この力を身につけたら本番で60点は楽勝にとれる!


頑張っているのに思うように成績が上がらず、
「このままだと本番で数学60点が厳しいかも…」
と不安に感じているあなた。

もしかして、
このような問題に直面していませんか?
  • 模試になると点がガクッと落ちる
  • 復習のやり方が分からない
  • 勉強してもすぐに忘れる
  • 凡ミスが直らない
  • 家だと集中して勉強できない
  • 問題集を買っても、1人で解けなくて途中でやめてしまう
  • 友人が点を伸ばしていて焦る
  • 頑張りたいから何をすればいいか教えて欲しい

僕が2年前に指導させてもらった中3のAくん
彼がまさにこのような状態でした。
 
すごく勉強したのに試験の結果が36点…
 
「どうすればいいか分からない…」
「点を上げれる自信がない…」
 
自信をなくし落ち込んでいましたが、
ある勉強方法を取り入れたことによって
Aくんは大変身!
 
なんと、たった2ヶ月で
36点 ⇒ 72点
なんと、驚きの36点UPを達成!

 
何をやっても点が伸びなかったAくん
彼を大変身させた「ある勉強方法」とは、
たったの5分で取り組める簡単なものです。
 
この勉強法を活用した人は、

 

43点 ⇒ 69点



67点 ⇒ 94点



人生初の100点!



 
このように次々と良い結果を報告してくれています^^
 
Aくんを大変身させた「ある勉強法」を
あなたにも活用してもらい
今すぐにでも結果を出して欲しいです。
 
そこで!
ある勉強法が正しく身につくように、
3つのワークを用意しました。
 
こちらのメルマガ講座の中で、
順にお渡ししていくので1つずつ取り組み、
やればやっただけ点が伸びていく感覚を掴んでくださいね!
 
もちろんメルマガ講座の登録は無料!
いますぐワークを受け取っておきましょう('◇')ゞ

     
 




2 件のコメント

  • ちゅういち より:

    わかりやすくて助かりました!!明日期末テストの上、この問題が一番できなかったので練習もかねてやれました。ありがとうございました!!

    • 数スタ運営者 より:

      お役に立ててよかったです^^
      テストうまくいってるといいなぁ~
      健闘を祈ります!

  • コメントを残す

    メールアドレスが公開されることはありません。