【中3因数分解】置き換えを利用した解き方を解説!

今回は中3で学習する「因数分解」の単元から、置き換えを利用した解き方について解説していきます!

次の式を因数分解しなさい。

$$\large{(x-2)^2-2(x-2)-35}$$

$$\large{ab-4a-b+4}$$

うげぇ…めっちゃ複雑そうなんだけど…

 

たしかに!

これは発展的な問題になるんだけど

これが解けるようになれば定期テストでも

高得点間違いなしだ!

だから、がんばって理解していこう(^^)

 

同じ部分は置き換えろ!

それでは、今回の問題の解き方を解説していきます。

解き方のポイントは

同じ部分は置き換えろ!

です。

 

どういうことかと言うと

因数分解したい式に、このような同じ部分が含まれている場合

 

置き換えという考え方を利用してやります。

 

そうすることによって

複雑だった式がシンプルになりますね!

$$\large{A^2-2A-35}$$

あとは、この式を因数分解していけば良いです。

 

$$\large{A^2-2A-35}$$

$$\large{=(A-7)(A+5)}$$

 

因数分解が完成したら

置き換えていたAを元に戻してやります。

$$\large{=\{ (x-2)-7\}\{(x-2)+5\}}$$

$$\large{=(x-9)(x+3)}$$

これで完成となります!

 

初めは複雑な式で、どのように因数分解していけばいいのか分かりにくかったですが、同じ部分を置きかえしてあげることでシンプルな方法で解くことができましたね(^^)

 

では、解法をまとめておきます。

\(x-2=A\)とおくと

$$\large{(x-2)^2-2(x-2)-35}$$

$$\large{=A^2-2A-35}$$

$$\large{=(A-7)(A+5)}$$

$$\large{=\{ (x-2)-7\}\{(x-2)+5\}}$$

$$\large{=(x-9)(x+3)}$$

 

同じ部分が無い場合には!?

それでは、次にこちらの問題を考えてみましょう。

次の式を因数分解しなさい。

$$\large{ab-4a-b+4}$$

よっしゃ!置き換えを利用すればええんじゃろ?

余裕だぜっ!!

って、あれぇぇぇ

同じ部分がないやんけっ!

 

同じように置き換えを利用して解きたかったのですが、同じ部分が見つからず困ってしまいます…

 

そんなときには

同じ部分を発掘するのだ!

 

因数分解したい式を前半と後半部分に分けてしまいます。

 

そして、それぞれの部分を因数分解してやります。

 

そうすることによって

同じ部分\((b-4)\)を発掘することができました!

 

同じ部分が発掘できたら、あとは置き換えを利用していけば良いですね。

$$\large{ab-4a-b+4}$$

$$\large{=a(b-4)-(b-4)}$$

\(b-4=A\)とおくと

$$\large{=aA-A}$$

$$\large{=A(a-1)}$$

$$\large{=(b-4)(a-1)}$$

これで因数分解が完成しました!

 

今回の式のように

同じ部分が見つからない…という場合

前半、後半に分けて因数分解をしてあげることで、同じ部分を発掘することができることがあります。

 

練習問題で理解を深める!

それでは、置き換えを利用した因数分解の理解を深めるために練習問題を解いてみましょう!

次の式を因数分解しなさい。

$$\large{(x-3)^2+5(x-3)-6}$$

解説&答えはこちら
解答

$$\large{(x+3)(x-4)}$$

 

\(x-3=A\)とおくと

$$\large{(x-3)^2+5(x-3)-6}$$

$$\large{=A^2+5A-6}$$

$$\large{=(A+6)(A-1)}$$

$$\large{=\{ (x-3)+6\}\{(x-3)-1\}}$$

$$\large{=(x+3)(x-4)}$$

 

次の式を因数分解しなさい。

$$\large{ab+ac-3b-3c}$$

解説&答えはこちら
解答

$$\large{(b+c)(a-3)}$$

 

$$\large{ab+ac-3b-3c}$$

$$\large{=a(b+c)-3(b+c)}$$

\(b+c=A\)とおくと

$$\large{=aA-3A}$$

$$\large{=A(a-3)}$$

$$\large{=(b+c)(a-3)}$$

まとめ

お疲れ様でした!

複雑な式の因数分解では、同じ部分が見つかれば置き換えを利用することで簡単に解くことができます。

 

もっと難しい因数分解に挑戦したい方は

こちらの問題をやってみましょう!

これが解けるようになれば

中学レベル卒業だ!!

【高校入試】因数分解の難問を解説!難関高校の入試問題に挑戦しよう!

 

 

【中3受験生へ】この力を身につけたら本番で60点は楽勝にとれる!


頑張っているのに思うように成績が上がらず、
「このままだと本番で数学60点が厳しいかも…」
と不安に感じているあなた。

もしかして、
このような問題に直面していませんか?
  • 模試になると点がガクッと落ちる
  • 復習のやり方が分からない
  • 勉強してもすぐに忘れる
  • 凡ミスが直らない
  • 家だと集中して勉強できない
  • 問題集を買っても、1人で解けなくて途中でやめてしまう
  • 友人が点を伸ばしていて焦る
  • 頑張りたいから何をすればいいか教えて欲しい

僕が2年前に指導させてもらった中3のAくん
彼がまさにこのような状態でした。
 
すごく勉強したのに試験の結果が36点…
 
「どうすればいいか分からない…」
「点を上げれる自信がない…」
 
自信をなくし落ち込んでいましたが、
ある勉強方法を取り入れたことによって
Aくんは大変身!
 
なんと、たった2ヶ月で
36点 ⇒ 72点
なんと、驚きの36点UPを達成!

 
何をやっても点が伸びなかったAくん
彼を大変身させた「ある勉強方法」とは、
たったの5分で取り組める簡単なものです。
 
この勉強法を活用した人は、

 

43点 ⇒ 69点



67点 ⇒ 94点



人生初の100点!



 
このように次々と良い結果を報告してくれています^^
 
Aくんを大変身させた「ある勉強法」を
あなたにも活用してもらい
今すぐにでも結果を出して欲しいです。
 
そこで!
ある勉強法が正しく身につくように、
3つのワークを用意しました。
 
こちらのメルマガ講座の中で、
順にお渡ししていくので1つずつ取り組み、
やればやっただけ点が伸びていく感覚を掴んでくださいね!
 
もちろんメルマガ講座の登録は無料!
いますぐワークを受け取っておきましょう('◇')ゞ

     
 




コメントを残す

メールアドレスが公開されることはありません。