数スタ運営部

数スタの公式LINEを開設しました!

友だち追加

 

数スタのオンラインショップ開設!

⇒ 数スタ STORE

中3受験生向けの演習課題を無料配布中!

【因数分解の公式】中学生の問題まとめ!それぞれのやり方は?

今回の記事では、中学で学習する因数分解の公式をまとめておきます。

覚えておきたい公式は以下の通り!

因数分解の公式(中学生)

$$① ab+ac=a(b+c)$$

$$② a^2+(a+b)x+ab=(x+a)(x+b)$$

$$③ a^2+2ab+b^2=(a+b)^2$$

$$④ a^2-2ab+b^2=(a-b)^2$$

$$⑤ a^2-b^2=(a+b)(a-b)$$

 

それでは、それぞれの公式を使った因数分解の問題について、例題を見ながら解き方を確認していきましょう!

因数分解公式① 共通因数をくくりだす。

次の式を因数分解しなさい。

$$4x^2y-6xy^2$$

使う公式

$$① ab+ac=a(b+c)$$

\(4x^2y\) と \(6xy^2\)の共通因数である \(2xy\) をくくりだします。

$$4x^2y-6xy^2=2xy(2x-3y)$$

このように式を見たとき、それぞれの項に共通因数がある場合には公式①を使ってくくりだしをしましょう。

【因数分解】共通因数でくくる場合のやり方は?

 

因数分解公式② 掛けて足して

次の式を因数分解しなさい。

$$x^2-5x-14$$

使う公式

$$② a^2+(a+b)x+ab=(x+a)(x+b)$$

 

掛けて\(-14\)、足して\(-5\)になる数を見つけます。

すると

\(-14=-7\times 2\\ \\ -7+2=-5\)

このように、\(-7\)と\(2\)という数の組み合わせを見つけることができます。

 

よって

$$x^2-5x-14=x^2+(-7+2)x-7\times 2\\ \\=(x-7)(x+2)$$

となります。

 

掛けて定数項、足して\(x\)の係数となる組み合わせを見つけることができれば完成ですね(^^)

 

スポンサーリンク

因数分解公式③④ 二乗になる

次の式を因数分解しなさい。

$$x^2+8x+16$$

$$4x^2-12xy+9y^2$$

使う公式

$$③ a^2+2ab+b^2=(a+b)^2$$

$$④ a^2-2ab+b^2=(a-b)^2$$

因数分解したい式の両サイドが、何かの二乗の形になっていれば、この公式を使う可能性が高いです。

まずは、次の式を因数分解していきましょう。

$$x^2+8x+16$$

両サイドの部分を見ると

$$(x)^2+8x+4^2$$

このように二乗の形で表すことができます。

次に、真ん中部分に注目すると

$$(x)^2+8x+4^2\\ \\=(x)^2+2\times x\times 4+4^2$$

このように両サイドの二乗で表されたパーツを掛けて2倍した形になっています。

このときには公式を用いて

$$(x)^2+8x+4^2 \\ \\ =(x)^2+8x+4^2\\ \\=(x)^2+2\times x\times 4+4^2\\ \\=(x+4)^2$$

と因数分解することできます。

 

次の式も同様に因数分解ができます。

$$4x^2-12xy+9y^2\\ \\=(2x)^2-2\times 2x\times 3y+(3y)^2\\ \\=(2x-3y)^2$$

 

因数分解をする式を見たとき、両サイドが二乗の形で表される場合には、この公式を使うのかな?と考えてみるといいですね。

そして、真ん中部分がそれぞれを掛けて2倍した形になっていることが分かったら確定!

そうでなければ公式②の掛けて足しての公式だなと判断していくとよいです。

 

因数分解の公式⑤ 二乗ひく二乗

次の式を因数分解しなさい。

$$4x^2-25y^2$$

使う公式

$$⑤ a^2-b^2=(a+b)(a-b)$$

これは一番簡単な公式です(^^)

式が二乗ひく二乗の形になっていればこれを用いて因数分解をします。

$$4x^2-25y^2=(2x)^2-(5y)^2\\ \\=(2x+5y)(2x-5y)$$

 

因数分解したい式の項が2つだけになっていれば、この公式もしくは共通因数をくくりだすやり方を用いるようになります。

見た目で判断しやすいので、この公式を用いた因数分解はありがたいですね(^^)

 

【因数分解の公式】中学生まとめ!

$$① ab+ac=a(b+c)$$

【例題】

$$4x^2y-6xy^2=2xy(2x-3y)$$

 

$$② a^2+(a+b)x+ab=(x+a)(x+b)$$

【例題】

$$x^2-5x-14=x^2+(-7+2)x-7\times 2\\ \\=(x-7)(x+2)$$

 

$$③ a^2+2ab+b^2=(a+b)^2$$

【例題】

$$x^2+8x+16=(x)^2+2\times x\times 4+4^2\\ \\=(x+4)^2$$

 

$$④ a^2-2ab+b^2=(a-b)^2$$

【例題】

$$4x^2-12xy+9y^2\\ \\=(2x)^2-2\times 2x\times 3y+(3y)^2\\ \\=(2x-3y)^2$$

 

$$⑤ a^2-b^2=(a+b)(a-b)$$

【例題】

$$4x^2-25y^2=(2x)^2-(5y)^2\\ \\=(2x+5y)(2x-5y)$$

 

それぞれの公式を発展的に学習したい場合は、こちらの記事がおすすめです。

【高校入試】因数分解の難問を解説!難関高校の入試問題に挑戦しよう!

 

スポンサーリンク

効率よく学習を進めていきたい方は必見!

この記事を通して、学習していただいた方の中には


もっといろんな単元の学習を進めていきたい!

という素晴らしい学習意欲を持っておられる方もいる事でしょう。

だけど

どこの単元を学習すればよいのだろうか。

何を使って学習すればよいのだろうか。

勉強を頑張りたいけど 何をしたらよいか悩んでしまって

手が止まってしまう…

そんなお悩みをお持ちの方もおられるのではないでしょうか。

そんなあなたには

スタディサプリを使うことをおススメします。

スタディサプリを使うことで

どの単元を学習すればよいのか 何を解けばよいのか

そういった悩みを全て解決することができます。

スタディサプリでは学習レベルに合わせて授業を進めることが出来るほか、たくさんの問題演習も行えるようになっています。

スタディサプリが提供するカリキュラム通りに学習を進めていくことで

何をしたらよいのか分からない…

といったムダな悩みに時間を割くことなく

ひたすら学習に打ち込むことができるようになります(^^)

また、スタディサプリにはこのようなたくさんのメリットがあります。

スタディサプリ 7つのメリット
  1. 費用が安い!月額980円で全教科全講義が見放題です。
  2. 基礎から応用まで各レベルに合わせた講義が受けれる
  3. 教科書に対応!それぞれの教科に沿って学習を進めることができる
  4. いつでもどこでも受講できる。時間や場所を選ばず受講できます。
  5. プロ講師の授業はていねいで分かりやすい!
  6. 都道府県別の受験対策もバッチリ!
  7. 合わないと感じれば、すぐに解約できる。
スタディサプリを活用することによって

今までの悩みを解決し、効率よく学習を進めていきましょう。

「最近、成績が上がってきてるけど塾でも通い始めたの?」

「どんなテキスト使ってるのか教えて!」

「勉強教えてーー!!」

スタディサプリを活用することで どんどん成績が上がり

友達から羨ましがられることでしょう(^^)

今まで通りの学習方法に不満のない方は、スタディサプリを使わなくても良いのですが

学習の成果を高めて、効率よく成績を上げていきたい方

是非、スタディサプリを活用してみてください。

スタディサプリでは、14日間の無料体験を受けることができます。

まずは無料体験受講をしてみましょう!

⇓  ⇓  ⇓  ⇓  ⇓  ⇓  ⇓

スタディサプリ小・中学講座

スタディサプリ高校講座

コメントを残す

メールアドレスが公開されることはありません。