【因数分解の公式】中学生の問題まとめ!それぞれのやり方は?

今回の記事では、中学で学習する因数分解の公式をまとめておきます。

覚えておきたい公式は以下の通り!

因数分解の公式(中学生)

$$① ab+ac=a(b+c)$$

$$② a^2+(a+b)x+ab=(x+a)(x+b)$$

$$③ a^2+2ab+b^2=(a+b)^2$$

$$④ a^2-2ab+b^2=(a-b)^2$$

$$⑤ a^2-b^2=(a+b)(a-b)$$

 

それでは、それぞれの公式を使った因数分解の問題について、例題を見ながら解き方を確認していきましょう!

因数分解公式① 共通因数をくくりだす。

次の式を因数分解しなさい。

$$4x^2y-6xy^2$$

使う公式

$$① ab+ac=a(b+c)$$

\(4x^2y\) と \(6xy^2\)の共通因数である \(2xy\) をくくりだします。

$$4x^2y-6xy^2=2xy(2x-3y)$$

このように式を見たとき、それぞれの項に共通因数がある場合には公式①を使ってくくりだしをしましょう。

【因数分解】共通因数でくくる場合のやり方は?

 

因数分解公式② 掛けて足して

次の式を因数分解しなさい。

$$x^2-5x-14$$

使う公式

$$② a^2+(a+b)x+ab=(x+a)(x+b)$$

 

掛けて\(-14\)、足して\(-5\)になる数を見つけます。

すると

\(-14=-7\times 2\\ \\ -7+2=-5\)

このように、\(-7\)と\(2\)という数の組み合わせを見つけることができます。

 

よって

$$x^2-5x-14=x^2+(-7+2)x-7\times 2\\ \\=(x-7)(x+2)$$

となります。

 

掛けて定数項、足して\(x\)の係数となる組み合わせを見つけることができれば完成ですね(^^)

 

スポンサーリンク

因数分解公式③④ 二乗になる

次の式を因数分解しなさい。

$$x^2+8x+16$$

$$4x^2-12xy+9y^2$$

使う公式

$$③ a^2+2ab+b^2=(a+b)^2$$

$$④ a^2-2ab+b^2=(a-b)^2$$

因数分解したい式の両サイドが、何かの二乗の形になっていれば、この公式を使う可能性が高いです。

まずは、次の式を因数分解していきましょう。

$$x^2+8x+16$$

両サイドの部分を見ると

$$(x)^2+8x+4^2$$

このように二乗の形で表すことができます。

次に、真ん中部分に注目すると

$$(x)^2+8x+4^2\\ \\=(x)^2+2\times x\times 4+4^2$$

このように両サイドの二乗で表されたパーツを掛けて2倍した形になっています。

このときには公式を用いて

$$(x)^2+8x+4^2 \\ \\ =(x)^2+8x+4^2\\ \\=(x)^2+2\times x\times 4+4^2\\ \\=(x+4)^2$$

と因数分解することできます。

 

次の式も同様に因数分解ができます。

$$4x^2-12xy+9y^2\\ \\=(2x)^2-2\times 2x\times 3y+(3y)^2\\ \\=(2x-3y)^2$$

 

因数分解をする式を見たとき、両サイドが二乗の形で表される場合には、この公式を使うのかな?と考えてみるといいですね。

そして、真ん中部分がそれぞれを掛けて2倍した形になっていることが分かったら確定!

そうでなければ公式②の掛けて足しての公式だなと判断していくとよいです。

 

因数分解の公式⑤ 二乗ひく二乗

次の式を因数分解しなさい。

$$4x^2-25y^2$$

使う公式

$$⑤ a^2-b^2=(a+b)(a-b)$$

これは一番簡単な公式です(^^)

式が二乗ひく二乗の形になっていればこれを用いて因数分解をします。

$$4x^2-25y^2=(2x)^2-(5y)^2\\ \\=(2x+5y)(2x-5y)$$

 

因数分解したい式の項が2つだけになっていれば、この公式もしくは共通因数をくくりだすやり方を用いるようになります。

見た目で判断しやすいので、この公式を用いた因数分解はありがたいですね(^^)

 

【因数分解の公式】中学生まとめ!

$$① ab+ac=a(b+c)$$

【例題】

$$4x^2y-6xy^2=2xy(2x-3y)$$

 

$$② a^2+(a+b)x+ab=(x+a)(x+b)$$

【例題】

$$x^2-5x-14=x^2+(-7+2)x-7\times 2\\ \\=(x-7)(x+2)$$

 

$$③ a^2+2ab+b^2=(a+b)^2$$

【例題】

$$x^2+8x+16=(x)^2+2\times x\times 4+4^2\\ \\=(x+4)^2$$

 

$$④ a^2-2ab+b^2=(a-b)^2$$

【例題】

$$4x^2-12xy+9y^2\\ \\=(2x)^2-2\times 2x\times 3y+(3y)^2\\ \\=(2x-3y)^2$$

 

$$⑤ a^2-b^2=(a+b)(a-b)$$

【例題】

$$4x^2-25y^2=(2x)^2-(5y)^2\\ \\=(2x+5y)(2x-5y)$$

 

それぞれの公式を発展的に学習したい場合は、こちらの記事がおすすめです。

【高校入試】因数分解の難問を解説!難関高校の入試問題に挑戦しよう!

 

スポンサーリンク

夏休みをどのように過ごすかで

あなたのレベルは大きく左右されます。

 

夏休みは頑張るぞ!

という方はこちらの記事を参考にしてみてください(^^)

【中1数学】夏休みにやる勉強とは?2学期に苦労しないためには…

2018.07.14

【中2数学】夏休みにやるべき勉強とは?2学期の強敵に備えろ!

2018.07.14

【中3数学】夏休みにやるべき勉強とは?塾講師がアドバイス!

2018.07.14

コメントを残す

メールアドレスが公開されることはありません。