【高校入試】因数分解の難問を解説!難関高校の入試問題に挑戦しよう!

今回は、難関高校の入試に出題された因数分解の難問を解説していきます。

 

因数分解は、必ず取りたい問題の1つです。

実際に出題された問題から抜粋して紹介しているので

これらの問題を全部解けるようになれば、本番もバッチリのはず!

がんばって解いていきましょう!

 


スマホでご覧いただく場合、数式が長すぎて画面に表示しきれない場合があります。

その場合には、数式を横にスライドしていただくことで式の続きを表示していただけます。

 

※問題を追加してほしいという声が多かったので、45問ほど追加しています。

ぜひ、ご活用くださいね(^^)

(2020年3月15日追加)

因数分解の難問に挑戦!

次の式を因数分解しなさい。

$$(2x+3)^2-(3x+2)(x+1)-(2x+3)$$

 

解説&答えはこちら
答え

$$(x+4)(x+1)$$

 

式を展開してから因数分解をしてやりましょう。

$$(2x+3)^2-(3x+2)(x+1)-(2x+3)$$
$$=4x^2+12x+9-3x^2-5x-2-2x-3$$

$$=x^2+5x+4$$

$$=(x+4)(x+1)$$

 

 

次の式を因数分解しなさい。

$$(2x-1)(x+4)-(x-6)(x-2)$$

 

解説&答えはこちら
答え

$$(x+16)(x-1)$$

 

式を展開してから因数分解してやりましょう。

$$(2x-1)(x+4)-(x-6)(x-2)$$

$$=2x^2+7x-4-x^2+8x-12$$

$$=x^2+15x-16$$

$$=(x+16)(x-1)$$

 

 

 

次の式を因数分解しなさい。

$$(x^2-x)^2-8(x^2-x)+12$$

 

解説&答えはこちら
答え

$$(x+1)(x-2)(x+2)(x-3)$$

 

\(x^2-x=A\)と置き換えを利用して因数分解していきます。

$$(x^2-x)^2-8(x^2-x)+12$$

$$=A^2-8A+12$$

$$=(A-6)(A-2)$$

$$=(x^2-x-6)(x^2-x-2)$$

$$=(x-3)(x+2)(x-2)(x+1)$$

 

 

 

次の式を因数分解しなさい。

$$(x+2y)(x+2y+14)+24$$

 

解説&答えはこちら
答え

$$(x+2y+12)(x+2y+2)$$

 

\(x+2y=A\)と置き換えを利用して因数分解していきます。

$$(x+2y)(x+2y+14)+24$$

$$=A(A+14)+24$$

$$=A^2+14A+24$$

$$=(A+12)(A+2)$$

$$=(x+2y+12)(x+2y+2)$$

 

 

 

次の式を因数分解しなさい。

$$(x-y)(x-y-2)-63$$

 

解説&答えはこちら
答え

$$(x-y-9)(x-y+7)$$

 

\(x-y=A\)と置き換えを利用して因数分解していきましょう。

$$(x-y)(x-y-2)-63$$

$$=A(A-2)-63$$

$$=A^2-2A-63$$

$$=(A-9)(A+7)$$

$$=(x-y-9)(x-y+7)$$

 

 

 

次の式を因数分解しなさい。

$$(x^2+4xy)^2-8(x^2+4xy)y^2-48y^4$$

 

解説&答えはこちら
答え

$$(x+6y)(x-2y)(x+2y)^2$$

 

\(x^2+4xy=A\)と置き換えを利用して因数分解していきましょう。

$$(x^2+4xy)^2-8(x^2+4xy)y^2-48y^4$$

$$=A^2-8Ay^2-48y^4$$

$$=(A-12y^2)(A+4y^2)$$

$$=(x^2+4xy-12y^2)(x^2+4xy+4y^2)$$

$$=(x+6y)(x-2y)(x+2y)^2$$

 

 

 

次の式を因数分解しなさい。

$$x^3+3x^2y-4xy^2-12y^3$$

 

解説&答えはこちら
答え

$$(x+2y)(x-2y)(x+3y)$$

 

\(x^3+3x^2y\)と\(-4xy^2-12y^3\)をそれぞれ共通因数でくくってやります。

その後、\(x+3y=A\)と置き換えを利用して因数分解していきましょう。

 

$$x^3+3x^2y-4xy^2-12y^3$$

$$=x^2(x+3y)-4y^2(x+3y)$$

$$=Ax^2-4Ay^2$$

$$=A(x^2-4y^2)$$

$$=(x+3y)(x-2y)(x+2y)$$

 

 

 

次の式を因数分解しなさい。

$$x^2+y^2-2xy-2x+2y$$

 

解説&答えはこちら
答え

$$(x-y)(x-y-2)$$

 

まずは、\(x^2+y^2-2xy\)と\(-2x+2y\)をそれぞれ因数分解します。

その後、\(x-y=A\)と置き換えを利用して因数分解をしていきましょう。

 

$$x^2+y^2-2xy-2x+2y$$

$$=(x-y)^2-2(x-y)$$

$$=A^2-2A$$

$$=A(A-2)$$

$$=(x-y)(x-y-2)$$

 

 

 

次の式を因数分解しなさい。

$$-x^2+y^2+4x-4$$

 

解説&答えはこちら
答え

$$(y+x-2)(y-x+2)$$

 

まずは\(-x^2+4x-4\)を因数分解してから

全体の因数分解に進んでいきましょう。

 

$$-x^2+y^2+4x-4$$

$$=y^2-x^2+4x-4$$

$$=y^2-(x-2)^2$$

$$=\{y+(x-2)\}\{y-(x-2)\}$$

$$=(y+x-2)(y-x+2)$$

 

 

次の式を因数分解しなさい。

$$x^3y+x^2y-xy^3-xy^2$$

 

解説&答えはこちら
答え

$$xy(x-y)(x+y+1)$$

 

\(x^3y-xy^3\)と\(x^2y-xy^2\)の共通因数をそれぞれくくってやります。

 

$$x^3y+x^2y-xy^3-xy^2$$

$$=xy(x^2-y^2)+xy(x-y)$$

$$=xy(x+y)(x-y)+xy(x-y)$$

\(xy(x-y)\)を共通因数としてくくってやります。

$$=xy(x-y)(x+y+1)$$

 

 

 

次の式を因数分解しなさい。

$$-a^2+4b^2-4c^2-4ca+8b+4$$

 

解説&答えはこちら
答え

$$(a+2b+2c+2)(-a+2b-2c+2)$$

 

\(4b^2+8b+4\)と\(-a^2-4ca-4c^2\)に分けて

それぞれを因数分解して考えていきます。

 

$$-a^2+4b^2-4c^2-4ca+8b+4$$

$$=4b^2+8b+4-a^2-4ca-4c^2$$

$$=4(b^2+2b+1)-(a^2+4ca+4c^2)$$

$$=4(b+1)^2-(a+2c)^2$$

$$=\{2(b+1)+(a+2c)\}\{2(b+1)-(a+2c)\}$$
$$=(a+2b+2c+2)(-a+2b-2c+2)$$

 

 

 

次の式を因数分解しなさい。

$$-3a-b+ab+3$$

 

解説&答えはこちら
答え

$$(a-1)(b-3)$$

 

\(-3a+ab\)と\(3-b\)をかたまりとして考えていきましょう。

 

$$-3a-b+ab+3$$

$$=ab-3a-b+3$$

$$=a(b-3)-(b-3)$$

\(b-3\)を共通因数としてくくりだします。

$$=(a-1)(b-3)$$

 

 

 

次の式を因数分解しなさい。

$$16x^2-24xy+9y^2-16x+12y-12$$

 

解説&答えはこちら
答え

$$(4x-3y-6)(4x-3y+2)$$

 

\(16x^2-24xy+9y^2\)と\(-16x+12y\)をそれぞれ因数分解して

\(4x-3y=A\)と置き換えを利用して因数分解していきましょう。

 

$$16x^2-24xy+9y^2-16x+12y-12$$
$$=(4x-3y)^2-4(4x-3y)-12$$

$$=A^2-4A-12$$

$$=(A-6)(A+2)$$

$$=(4x-3y-6)(4x-3y+2)$$

 

 

 

次の式を因数分解しなさい。

$$x^2-xy+2x-3(y+1)$$

 

解説&答えはこちら
答え

$$(x-y-1)(x+3)$$

 

\(x\)で式をまとめます。

$$x^2-(y-2)x-3(y+1)$$

掛けて\(-3(y+1)\)、足して\(-(y-2)\)になる組み合わせを考えると

\(-(y+1)\)と\(3\)が見つかります。

よって

$$=\{x-(y+1)\}(x+3)$$

$$=(x-y-1)(x+3)$$

 

 

 

以上、難問因数分解でした!

式のどの部分をかたまりと考えるか

どの部分を置き換えるかが解法のポイントですね。

たくさんの演習を通して、しっかりと解けるようにしておきましょう!

 

 

 

因数分解の難問を追加しました!

因数分解の難問をまとめたプリントを作成しました。

解説動画もご活用ください(/・ω・)/

 

【動画解説】

因数分解①の解説

 

因数分解②の解説

 

因数分解③の解説

 

因数分解④の解説

 

因数分解⑤の解説

 

因数分解⑥の解説

 

因数分解⑦の解説

 

因数分解⑧の解説

 

因数分解⑨の解説

 

 

【中3受験生へ】この力を身につけたら本番で60点は楽勝にとれる!


頑張っているのに思うように成績が上がらず、
「このままだと本番で数学60点が厳しいかも…」
と不安に感じているあなた。

もしかして、
このような問題に直面していませんか?
  • 模試になると点がガクッと落ちる
  • 復習のやり方が分からない
  • 勉強してもすぐに忘れる
  • 凡ミスが直らない
  • 家だと集中して勉強できない
  • 問題集を買っても、1人で解けなくて途中でやめてしまう
  • 友人が点を伸ばしていて焦る
  • 頑張りたいから何をすればいいか教えて欲しい

僕が2年前に指導させてもらった中3のAくん
彼がまさにこのような状態でした。
 
すごく勉強したのに試験の結果が36点…
 
「どうすればいいか分からない…」
「点を上げれる自信がない…」
 
自信をなくし落ち込んでいましたが、
ある勉強方法を取り入れたことによって
Aくんは大変身!
 
なんと、たった2ヶ月で
36点 ⇒ 72点
なんと、驚きの36点UPを達成!

 
何をやっても点が伸びなかったAくん
彼を大変身させた「ある勉強方法」とは、
たったの5分で取り組める簡単なものです。
 
この勉強法を活用した人は、

 

43点 ⇒ 69点



67点 ⇒ 94点



人生初の100点!



 
このように次々と良い結果を報告してくれています^^
 
Aくんを大変身させた「ある勉強法」を
あなたにも活用してもらい
今すぐにでも結果を出して欲しいです。
 
そこで!
ある勉強法が正しく身につくように、
3つのワークを用意しました。
 
こちらのメルマガ講座の中で、
順にお渡ししていくので1つずつ取り組み、
やればやっただけ点が伸びていく感覚を掴んでくださいね!
 
もちろんメルマガ講座の登録は無料!
いますぐワークを受け取っておきましょう('◇')ゞ

     
 




16 件のコメント

  • 匿名 より:

    色々な問題が解けて良かったです!

    • 数スタ運営者 より:

      お役に立てて嬉しいです(^^)
      コメントありがとうございました!

  • 匿名 より:

    こんにちは、中学2年のものです。
    多くの問題、ありがとうございました。
    難易度的には、少し簡単すぎたような気がします。
    また機会があればよろしくお願いします。

    • 数スタ運営者 より:

      中2で因数分解が簡単だって!?
      次はもっと難しい問題を用意しないといけませんね(/・ω・)/
      素晴らしいです!

  • Aさん より:

    小4だが、少し難しい。もっと色々な問題を解いて訓練しなくっちゃね‼

    • 数スタ運営者 より:

      小4で因数分解を解いているとは…恐れ入りますw
      たくさん問題を解いて、どんどんレベルアップしていきましょう(/・ω・)/

  • pannko より:

    中一です。最近因数分解を勉強して、これに挑戦してみました。難しかったけど、ためになりました。

    • 数スタ運営者 より:

      記事を活用いただき、ありがとうございます!
      中1なのにすごいですね(^^)

  • 匿名のじいさん より:

    今年60歳で定年退職した者です。最近、初孫が生まれて顔がほころび続けているじいさんですが、浮かれてばかりいると頭がイカレてしまうかもしれないので、このサイトを利用させていただき数学を勉強しなおしているところです。孫が中学生や高校生になった時、「因数分解がわからない」と言い出したらじいさんのすごいところをみせてやる、という意気込みで取り組んでいます。中学生の教科書レベルの因数分解は、だいたい正解を導くことができるので、難関高校の入試レベルに挑戦ちゅうです。これからも、このじいさんの鈍った脳みそを刺激する問題をお願いします。

    • 数スタ運営者 より:

      なんだか素敵なエピソードでほっこりしました。
      お孫さんが
      「おじいちゃん、数学教えてー」
      と頼りにしてくれる日が待ち遠しいですね^^

  • さるもとch より:

    明日テストなんですけどうちの学校周りの学校より少しレベルが高いそうで数学の問題が難しい入試レベルなんだそうで流石にこんなむずいのは出ないやろと思ってたけど過去問解いてみたらこれに似たものが出てきてとても勉強になりました

    • 数スタ運営者 より:

      このレベルの因数分解がテストに出るのか…
      大変ですけど頑張ってくださいね!

  • 匿名希望 より:

    春休み明けのテストに向けて頑張ります!

    • 数スタ運営者 より:

      よい意気込みですね!
      ファイトです!!

  • 匿名 より:

    これを生かして
    テスト頑張ります。

    • 数スタ運営者 より:

      テスト応援しています!
      ファイトだ(/・ω・)/

  • コメントを残す

    メールアドレスが公開されることはありません。