数スタ運営部

数スタの公式LINEを開設しました!

友だち追加

 

数スタのオンラインショップ開設!

⇒ 数スタ STORE

中3受験生向けの演習課題を無料配布中!

【ルートの分数計算】問題解説で完全マスターだ!

ルートの分数計算って…

マジ複雑!

 

 

できることなら見たくもない!

って感じですよねw

 

だけど、そうも言ってられないので

この記事を通して克服していきましょう。

 

というわけで、今回は複雑そうなルートの分数計算をいくつかピックアップしました。

(1)\(\displaystyle{\frac{30}{\sqrt{5}}-\sqrt{20}}\)

(2)\(\displaystyle{\sqrt{8}\times \sqrt{3}-\frac{2}{\sqrt{6}}}\)

(3)\(\displaystyle{\frac{6-2\sqrt{3}}{\sqrt{2}}+\sqrt{2}(\sqrt{3}-1)}\)

(4)\(\displaystyle{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{8}}-\frac{1}{\sqrt{50}}}\)

~高校レベル~

(5)\(\displaystyle{\frac{\sqrt{5}}{\sqrt{3}+1}-\frac{\sqrt{3}}{\sqrt{5}+\sqrt{3}}}\)

 

これらの解き方を丁寧に解説をつけていくので

みんな!

ルートの分数計算をマスターしちゃおうぜ★

 

今回の記事はこちらの動画でも解説しています(/・ω・)/

 

スポンサーリンク

(1)有理化をしっかりとね

(1)\(\displaystyle{\frac{30}{\sqrt{5}}-\sqrt{20}}\)

 

分母にルートがあれば有理化!

ルートの中が大きいときには簡単にする!

ルートの計算においては、この2つが鉄則ですね(^^)

 

 

$$\frac{30}{\sqrt{5}}-\sqrt{20}$$

$$=\frac{30\times \sqrt{5}}{\sqrt{5}\times \sqrt{5}}-2\sqrt{5}$$

$$=\frac{30\sqrt{5}}{5}-2\sqrt{5}$$

$$=6\sqrt{5}-2\sqrt{5}$$

$$=4\sqrt{5}$$

 

答え

$$4\sqrt{5}$$

 

しっかりと有理化ができれば

あとは簡単ですね(^^)

 

(2)通分が必要だ

(2)\(\displaystyle{\sqrt{8}\times \sqrt{3}-\frac{2}{\sqrt{6}}}\)

 

まずは有理化、そして掛け算の計算をやっていきましょう。

 

$$\sqrt{8}\times \sqrt{3}-\frac{2}{\sqrt{6}}$$

$$=\sqrt{24}-\frac{2\times \sqrt{6}}{\sqrt{6}\times \sqrt{6}}$$

$$=2\sqrt{6}-\frac{2\sqrt{6}}{6}$$

$$=2\sqrt{6}-\frac{\sqrt{6}}{3}$$

$$=\frac{6\sqrt{6}}{3}-\frac{\sqrt{6}}{3}$$

$$=\frac{5\sqrt{6}}{3}$$

 

答え

$$\frac{5\sqrt{6}}{3}$$

 

今回の問題のように通分が必要になる場合もあります。

だけど、1つずつ丁寧にやっていけば大丈夫だね(^^)

 

(3)分数の上にたくさん…

(3)\(\displaystyle{\frac{6-2\sqrt{3}}{\sqrt{2}}+\sqrt{2}(\sqrt{3}-1)}\)

 

かなり複雑な形だけど、やっていくことは一緒だよ!

まずは有理化、そして展開だね。

 

$$\frac{6-2\sqrt{3}}{\sqrt{2}}+\sqrt{2}(\sqrt{3}-1)$$

$$=\frac{(6-2\sqrt{3})\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}+\sqrt{6}-\sqrt{2}$$

$$=\frac{6\sqrt{2}-2\sqrt{6}}{2}+\sqrt{6}-\sqrt{2}$$

$$=3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}$$

$$=2\sqrt{2}$$

 

答え

$$2\sqrt{2}$$

 

分数の上にたくさん乗っていても

やり方は一緒だ!

だけど、計算ミスしやすくなるから途中式をしっかりと書くようにしようね。

スポンサーリンク

(4)有理化⇒通分の流れ

(4)\(\displaystyle{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{8}}-\frac{1}{\sqrt{50}}}\)

 

分母にルートがあるので有理化をしていきましょう。

有理化を簡単にするため、\(\sqrt{8}\)と\(\sqrt{50}\)は簡単な形に変形しておきます。

 

$$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{8}}-\frac{1}{\sqrt{50}}$$

$$=\frac{1}{\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{5\sqrt{2}}$$

$$=\frac{1\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}+\frac{1\times \sqrt{2}}{2\sqrt{2}\times \sqrt{2}}-\frac{1\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}}$$

$$=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{10}$$

$$=\frac{10\sqrt{2}}{20}+\frac{5\sqrt{2}}{20}-\frac{2\sqrt{2}}{20}$$

$$=\frac{10\sqrt{2}+5\sqrt{2}-2\sqrt{2}}{20}$$

$$=\frac{13\sqrt{2}}{20}$$

 

答え

$$\frac{13\sqrt{2}}{20}$$

 

(5)高校バージョンの有理化

(5)\(\displaystyle{\frac{\sqrt{5}}{\sqrt{3}+1}-\frac{\sqrt{3}}{\sqrt{5}+\sqrt{3}}}\)

 

これは高校生レベルの問題になります。

分母にルートがあるので、有理化をしていきますが

このような式を掛けて有理化していきましょう。

 

$$\frac{\sqrt{5}}{\sqrt{3}+1}-\frac{\sqrt{3}}{\sqrt{5}+\sqrt{3}}$$

$$=\frac{\sqrt{5}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}-\frac{\sqrt{3}(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$$

$$=\frac{\sqrt{15}-\sqrt{5}}{3-1}-\frac{\sqrt{15}-3}{5-3}$$

$$=\frac{\sqrt{15}-\sqrt{5}}{2}-\frac{\sqrt{15}-3}{2}$$

$$=\frac{(\sqrt{15}-\sqrt{5})-(\sqrt{15}-3)}{2}$$

$$=\frac{\sqrt{15}-\sqrt{5}-\sqrt{15}+3}{2}$$

$$=\frac{3-\sqrt{5}}{2}$$

 

答え

$$\frac{3-\sqrt{5}}{2}$$

 

ルートの分数計算まとめ

お疲れ様でした!

ルートの分数計算のポイントは

有理化&通分だね!

 

たくさん問題演習をして理解を深めていこう

ファイトだ(/・ω・)/

 

スポンサーリンク

効率よく学習を進めていきたい方は必見!

この記事を通して、学習していただいた方の中には


もっといろんな単元の学習を進めていきたい!

という素晴らしい学習意欲を持っておられる方もいる事でしょう。

だけど

どこの単元を学習すればよいのだろうか。

何を使って学習すればよいのだろうか。

勉強を頑張りたいけど 何をしたらよいか悩んでしまって

手が止まってしまう…

そんなお悩みをお持ちの方もおられるのではないでしょうか。

そんなあなたには

スタディサプリを使うことをおススメします。

スタディサプリを使うことで

どの単元を学習すればよいのか 何を解けばよいのか

そういった悩みを全て解決することができます。

スタディサプリでは学習レベルに合わせて授業を進めることが出来るほか、たくさんの問題演習も行えるようになっています。

スタディサプリが提供するカリキュラム通りに学習を進めていくことで

何をしたらよいのか分からない…

といったムダな悩みに時間を割くことなく

ひたすら学習に打ち込むことができるようになります(^^)

また、スタディサプリにはこのようなたくさんのメリットがあります。

スタディサプリ 7つのメリット
  1. 費用が安い!月額980円で全教科全講義が見放題です。
  2. 基礎から応用まで各レベルに合わせた講義が受けれる
  3. 教科書に対応!それぞれの教科に沿って学習を進めることができる
  4. いつでもどこでも受講できる。時間や場所を選ばず受講できます。
  5. プロ講師の授業はていねいで分かりやすい!
  6. 都道府県別の受験対策もバッチリ!
  7. 合わないと感じれば、すぐに解約できる。
スタディサプリを活用することによって

今までの悩みを解決し、効率よく学習を進めていきましょう。

「最近、成績が上がってきてるけど塾でも通い始めたの?」

「どんなテキスト使ってるのか教えて!」

「勉強教えてーー!!」

スタディサプリを活用することで どんどん成績が上がり

友達から羨ましがられることでしょう(^^)

今まで通りの学習方法に不満のない方は、スタディサプリを使わなくても良いのですが

学習の成果を高めて、効率よく成績を上げていきたい方

是非、スタディサプリを活用してみてください。

スタディサプリでは、14日間の無料体験を受けることができます。

まずは無料体験受講をしてみましょう!

⇓  ⇓  ⇓  ⇓  ⇓  ⇓  ⇓

スタディサプリ小・中学講座

スタディサプリ高校講座

コメントを残す

メールアドレスが公開されることはありません。