数スタ運営部

数スタの公式LINEを開設しました!

友だち追加

 

数スタのオンラインショップ開設!

⇒ 数スタ STORE

中3受験生向けの演習課題を無料配布中!

【連立方程式】鉄橋、トンネルを列車が通過する文章問題はこれでバッチリ!

今回は中2で学習する連立方程式の単元から

列車が鉄橋、トンネルを通過するときの文章問題について解説していくよ!

 

列車の通過問題というのはこんなやつだね。

問題

ある列車が、1400mのトンネルに入り始めてから出終わるまでに78秒かかり、同じ速さで540mの鉄橋を渡り始めてから渡り終わるまでに35秒かかるという。この列車の長さを\(x\)m、速さを秒速\(y\)mとして連立方程式を立てて、列車の長さと速さを求めなさい。

 

この問題では、列車がトンネルや鉄橋を通過するというのはどういうことなのか。

そのポイントを知っておく必要があります。

スポンサーリンク

トンネル・鉄橋を通り抜けるときのポイントとは

列車がトンネルや鉄橋を通り抜けるというのは、どういうことか考えていきましょう。

 

まず列車がトンネルや鉄橋を渡り始めるというのは、列車の頭がトンネルの入口に差し掛かった状況のことをいいます。

 

そして、列車がトンネルを通り抜けるというのは、列車のお尻部分がトンネルの出口まで到達した状況のことをいいます。

 

つまり

列車がトンネルや鉄橋を通り抜けるというのは

列車の頭が入口に差し掛かったところから

お尻部分が出口に到達するところまで進んだ状況のことをいいます。

 

 

よって、トンネルや鉄橋を通過するためには

(トンネル・鉄橋の長さ)+(列車の長さ)

だけ列車が進む必要があるということになります。

 

今回の問題解説!

それでは、上で紹介したポイントを利用して

今回の問題を解説していきます。

問題

ある列車が、1400mのトンネルに入り始めてから出終わるまでに78秒かかり、同じ速さで540mの鉄橋を渡り始めてから渡り終わるまでに35秒かかるという。この列車の長さを\(x\)m、速さを秒速\(y\)mとして連立方程式を立てて、列車の長さと速さを求めなさい。

 

まずは、トンネルから考えていきましょう。

このとき、列車は秒速\(y\)mで78秒間進んでているので

\(y\times 78=78y\)だけ進んだことになります。

$$(道のり)=(速さ)\times(時間)$$

みはじの使い方を忘れちゃった人は、こちらで確認しておきましょう(^^)

【文字式】速さの問題をわかりやすく解説!

 

また、トンネルを通り抜けるまでに列車は

トンネルの長さ+列車の長さ の分だけ進む必要があります。

つまり、\(1400+x\)進まなくてはいけません。

 

よって

$$78y=1400+x$$

となります。

 

鉄橋の場合も考えましょう。

このとき、列車は秒速\(y\)mで35秒間進んでているので

\(y\times 35=35y\)だけ進んだことになります。

 

また、鉄橋を渡りきるまでに列車は

鉄橋の長さ+列車の長さ の分だけ進む必要があります。

つまり、\(540+x\)進まなくてはいけません。

 

よって

$$35y=540+x$$

となります。

 

2つの式をまとめると

$$\begin{eqnarray} \left\{ \begin{array}{l} 78y = 1400+x \\ 35y = 540+x \end{array} \right. \end{eqnarray}$$

このような連立方程式を作ることができました。

 

あとは計算していくだけですね!

今回は代入法を使って計算していきます。

 

それぞれ\(x=\)の形に変形して、代入していきます。

$$78y-1400=x$$

$$35y-540=x$$

 

$$78y-1400=35y-540$$

$$78y-35y=-540+1400$$

$$43y=860$$

$$y=20$$

 

\(y=20\)を\(x=35y-540\)に代入すると

$$x=35\times 20-540$$

$$x=700-540$$

$$x=160$$

 

よって、列車の長さは160m、速さは秒速20mということが求まりました。

 

列車の長さがポイント!いろんなパターンを学ぼう!

それでは、通過に関しての基本問題はご理解いただけましたね。

ここからは、いろんなパターンを見ていきましょう。

 

トンネルに隠れていたときを考えるパターン

ある電車が1356mのトンネルを通過したとき、電車は52秒間トンネルにかくれてその姿が見えなかった。この電車の長さを\(x\)m、速さを秒速\(y\)mとして式を立てなさい。

 

『トンネルを通過したとき、電車は52秒間トンネルにかくれてその姿が見えなかった。』

トンネルの中で隠れていたというのは

列車のお尻部分がトンネルの入り口を通過してから列車の頭部分がトンネルの出口に差し掛かるまでのことを言います。

 

よって、式は

$$52y=1356-x$$

となります。

 

トンネルを入り始めてから、入りきるまでのパターン

ある列車がトンネルに入り始めてから、入りきるまでに6秒かかった。この列車の長さを\(x\)m、速さを秒速\(y\)mとして式を立てなさい。

 

『ある列車がトンネルに入り始めてから、入りきるまでに6秒かかった。』

トンネルの中に入りきるというのは

列車の頭部分がトンネルの入り口を通過してから列車のお尻部分がトンネルの入口に到達するまでのことを言います。

よって、式は

$$6y=x$$

となります。

 

まとめ

お疲れ様でした!

いろんなパターンを見てもらいましたが

トンネルや鉄橋を通過する問題では

 

列車の長さを意識することがポイントとなります。

文章だけではなかなかイメージがしにくい問題なので

問題を解くときには簡単な絵を描いてみると

式が立てやすくなるのでおススメです(^^)

 

それでは、最後にもう1度それぞれのパターンの絵を確認して終わりにしましょう!

 

スポンサーリンク

効率よく学習を進めていきたい方は必見!

この記事を通して、学習していただいた方の中には


もっといろんな単元の学習を進めていきたい!

という素晴らしい学習意欲を持っておられる方もいる事でしょう。

だけど

どこの単元を学習すればよいのだろうか。

何を使って学習すればよいのだろうか。

勉強を頑張りたいけど 何をしたらよいか悩んでしまって

手が止まってしまう…

そんなお悩みをお持ちの方もおられるのではないでしょうか。

そんなあなたには

スタディサプリを使うことをおススメします。

スタディサプリを使うことで

どの単元を学習すればよいのか 何を解けばよいのか

そういった悩みを全て解決することができます。

スタディサプリでは学習レベルに合わせて授業を進めることが出来るほか、たくさんの問題演習も行えるようになっています。

スタディサプリが提供するカリキュラム通りに学習を進めていくことで

何をしたらよいのか分からない…

といったムダな悩みに時間を割くことなく

ひたすら学習に打ち込むことができるようになります(^^)

また、スタディサプリにはこのようなたくさんのメリットがあります。

スタディサプリ 7つのメリット
  1. 費用が安い!月額980円で全教科全講義が見放題です。
  2. 基礎から応用まで各レベルに合わせた講義が受けれる
  3. 教科書に対応!それぞれの教科に沿って学習を進めることができる
  4. いつでもどこでも受講できる。時間や場所を選ばず受講できます。
  5. プロ講師の授業はていねいで分かりやすい!
  6. 都道府県別の受験対策もバッチリ!
  7. 合わないと感じれば、すぐに解約できる。
スタディサプリを活用することによって

今までの悩みを解決し、効率よく学習を進めていきましょう。

「最近、成績が上がってきてるけど塾でも通い始めたの?」

「どんなテキスト使ってるのか教えて!」

「勉強教えてーー!!」

スタディサプリを活用することで どんどん成績が上がり

友達から羨ましがられることでしょう(^^)

今まで通りの学習方法に不満のない方は、スタディサプリを使わなくても良いのですが

学習の成果を高めて、効率よく成績を上げていきたい方

是非、スタディサプリを活用してみてください。

スタディサプリでは、14日間の無料体験を受けることができます。

まずは無料体験受講をしてみましょう!

⇓  ⇓  ⇓  ⇓  ⇓  ⇓  ⇓

スタディサプリ小・中学講座

スタディサプリ高校講座

コメントを残す

メールアドレスが公開されることはありません。