数スタ運営部

数スタの公式LINEを開設しました!

友だち追加

 

数スタのオンラインショップ開設!

⇒ 数スタ STORE

中3受験生向けの演習課題を無料配布中!

【入試難問に挑戦!】連立方程式の解が存在しない問題とは!?

今回挑戦する問題はこちら

\(a\)を定数とする。\(x,y\)についての連立方程式

$$\large{\begin{eqnarray} \left\{ \begin{array}{l}(-a^2+7a-6)x+2y=4 \\ax+y=a \end{array} \right. \end{eqnarray}}$$

の解が存在しないとき、\(a\)の値を求めよ。

難関高校の入試に出題された連立方程式に関する問題です。

 

ぜひ、挑戦してみましょう!

スポンサーリンク

連立方程式の解が存在しないとは?

この問題を解く上で、大切なポイントを確認しておきましょう。

連立方程式の解が存在しないとは?

 

ここで1つ思い出しておきたいのは

ともに一次式である連立方程式の解とは、2直線の交点と同じである。

ということです。

 

つまり

連立方程式の解が存在しないとは

『2直線が平行であり、交点を持たない』

ということになります。

 

 

今回の問題では

2つの方程式を直線として考え

それらが平行になる(傾きが等しくなる)ときを求めれば良いということになります。

問題の指針それぞれの直線が平行になれば交点を持たないので解は存在しない。

よって、それぞれの傾きを求め、それらが等しくなるときの\(a\)の値を求めればよい。

問題の解法

それぞれの傾きを求めていきましょう。

まずは、\((-a^2+7a-6)x+2y=4\)

式が複雑なので、慎重に式変形していきましょうね!

$$(-a^2+7a-6)x+2y=4$$

$$2y=-(-a^2+7a-6)x+4$$

$$y=\frac{a^2-7a+6}{2}x+2$$

よって、傾きは

$$\frac{a^2-7a+6}{2}$$

であることがわかります。

 

 

次は、\(ax+y=a\)

こちらはシンプルで簡単ですね!

$$ax+y=a$$

$$y=-ax+a$$

よって、傾きは\(-a\)ということがわかりました。

 

 

それぞれの傾きが等しくなれば平行になるので

$$\frac{a^2-7a+6}{2}=-a$$

この方程式を解いて\(a\)の値を求めます。

$$\frac{a^2-7a+6}{2}\times 2=-a\times 2$$

$$a^2-7a+6=-2a$$

$$a^2-5a+6=0$$

$$(a-3)(a-2)=0$$

$$a=3,2$$

 

 

このように、それぞれの式が平行になるのは

\(a=3,2\)のときであるとわかりました。

 

 

よっしゃ!答え出たぜ!

と、焦ると落とし穴にハマってしまいます…

 

実は、それぞれの式が平行であっても

交点を持ってしまうときがあります。

 

それは…

2つの式が、全く同じものになってしまったときです。

 

 

なので、\(a=3,2\)のときに平行になることはわかりましたが、それぞれの値のときに同じ式になってしまっていないかを確認する必要があります。

 

では、それぞれ確認していきます。

\(a=3\)のとき

\((-a^2+7a-6)x+2y=4\)に代入して式を求めると

$$y=-3x+2$$

\(ax+y=a\)に代入して式を求めると

$$y=-3x+3$$

となり、それぞれの式は別物であることがわかります。

よって、\(a=3\)は答えとしてOKということになります。

 

一方

\(a=2\)のとき

\((-a^2+7a-6)x+2y=4\)に代入して式を求めると

$$y=-2x+2$$

\(ax+y=a\)に代入して式を求めると

$$y=-2x+2$$

となり、それぞれは同じ式になってしまいます。

これでは、交点を持ってしまうので問題の条件を満たさないことになってしまいます。

よって、\(a=2\)は答えとしてNGということになります。

 

 

以上より

今回の問題の答えは

解答

$$a=3$$

まとめ

お疲れ様でした!

難しい問題ではありましたが、連立方程式や一次関数に関する知識や考え方をしっかりと身につけておくことができれば対応することのできた問題でしたね!

応用力を高めていくためには、こうやってたくさんの問題に挑戦して知識の引き出しを作っていくことが大切です。

 

恐れず、どんどん難しい問題に挑戦していきましょう!

スポンサーリンク

効率よく学習を進めていきたい方は必見!

この記事を通して、学習していただいた方の中には


もっといろんな単元の学習を進めていきたい!

という素晴らしい学習意欲を持っておられる方もいる事でしょう。

だけど

どこの単元を学習すればよいのだろうか。

何を使って学習すればよいのだろうか。

勉強を頑張りたいけど 何をしたらよいか悩んでしまって

手が止まってしまう…

そんなお悩みをお持ちの方もおられるのではないでしょうか。

そんなあなたには

スタディサプリを使うことをおススメします。

スタディサプリを使うことで

どの単元を学習すればよいのか 何を解けばよいのか

そういった悩みを全て解決することができます。

スタディサプリでは学習レベルに合わせて授業を進めることが出来るほか、たくさんの問題演習も行えるようになっています。

スタディサプリが提供するカリキュラム通りに学習を進めていくことで

何をしたらよいのか分からない…

といったムダな悩みに時間を割くことなく

ひたすら学習に打ち込むことができるようになります(^^)

また、スタディサプリにはこのようなたくさんのメリットがあります。

スタディサプリ 7つのメリット
  1. 費用が安い!月額980円で全教科全講義が見放題です。
  2. 基礎から応用まで各レベルに合わせた講義が受けれる
  3. 教科書に対応!それぞれの教科に沿って学習を進めることができる
  4. いつでもどこでも受講できる。時間や場所を選ばず受講できます。
  5. プロ講師の授業はていねいで分かりやすい!
  6. 都道府県別の受験対策もバッチリ!
  7. 合わないと感じれば、すぐに解約できる。
スタディサプリを活用することによって

今までの悩みを解決し、効率よく学習を進めていきましょう。

「最近、成績が上がってきてるけど塾でも通い始めたの?」

「どんなテキスト使ってるのか教えて!」

「勉強教えてーー!!」

スタディサプリを活用することで どんどん成績が上がり

友達から羨ましがられることでしょう(^^)

今まで通りの学習方法に不満のない方は、スタディサプリを使わなくても良いのですが

学習の成果を高めて、効率よく成績を上げていきたい方

是非、スタディサプリを活用してみてください。

スタディサプリでは、14日間の無料体験を受けることができます。

まずは無料体験受講をしてみましょう!

⇓  ⇓  ⇓  ⇓  ⇓  ⇓  ⇓

スタディサプリ小・中学講座

スタディサプリ高校講座

コメントを残す

メールアドレスが公開されることはありません。