【入試難問に挑戦!】連立方程式の解が存在しない問題とは!?

今回挑戦する問題はこちら

\(a\)を定数とする。\(x,y\)についての連立方程式

$$\large{\begin{eqnarray} \left\{ \begin{array}{l}(-a^2+7a-6)x+2y=4 \\ax+y=a \end{array} \right. \end{eqnarray}}$$

の解が存在しないとき、\(a\)の値を求めよ。

難関高校の入試に出題された連立方程式に関する問題です。

 

ぜひ、挑戦してみましょう!

連立方程式の解が存在しないとは?

この問題を解く上で、大切なポイントを確認しておきましょう。

連立方程式の解が存在しないとは?

 

ここで1つ思い出しておきたいのは

ともに一次式である連立方程式の解とは、2直線の交点と同じである。

ということです。

 

つまり

連立方程式の解が存在しないとは

『2直線が平行であり、交点を持たない』

ということになります。

 

 

今回の問題では

2つの方程式を直線として考え

それらが平行になる(傾きが等しくなる)ときを求めれば良いということになります。

問題の指針それぞれの直線が平行になれば交点を持たないので解は存在しない。

よって、それぞれの傾きを求め、それらが等しくなるときの\(a\)の値を求めればよい。

問題の解法

それぞれの傾きを求めていきましょう。

まずは、\((-a^2+7a-6)x+2y=4\)

式が複雑なので、慎重に式変形していきましょうね!

$$(-a^2+7a-6)x+2y=4$$

$$2y=-(-a^2+7a-6)x+4$$

$$y=\frac{a^2-7a+6}{2}x+2$$

よって、傾きは

$$\frac{a^2-7a+6}{2}$$

であることがわかります。

 

 

次は、\(ax+y=a\)

こちらはシンプルで簡単ですね!

$$ax+y=a$$

$$y=-ax+a$$

よって、傾きは\(-a\)ということがわかりました。

 

 

それぞれの傾きが等しくなれば平行になるので

$$\frac{a^2-7a+6}{2}=-a$$

この方程式を解いて\(a\)の値を求めます。

$$\frac{a^2-7a+6}{2}\times 2=-a\times 2$$

$$a^2-7a+6=-2a$$

$$a^2-5a+6=0$$

$$(a-3)(a-2)=0$$

$$a=3,2$$

 

 

このように、それぞれの式が平行になるのは

\(a=3,2\)のときであるとわかりました。

 

 

よっしゃ!答え出たぜ!

と、焦ると落とし穴にハマってしまいます…

 

実は、それぞれの式が平行であっても

交点を持ってしまうときがあります。

 

それは…

2つの式が、全く同じものになってしまったときです。

 

 

なので、\(a=3,2\)のときに平行になることはわかりましたが、それぞれの値のときに同じ式になってしまっていないかを確認する必要があります。

 

では、それぞれ確認していきます。

\(a=3\)のとき

\((-a^2+7a-6)x+2y=4\)に代入して式を求めると

$$y=-3x+2$$

\(ax+y=a\)に代入して式を求めると

$$y=-3x+3$$

となり、それぞれの式は別物であることがわかります。

よって、\(a=3\)は答えとしてOKということになります。

 

一方

\(a=2\)のとき

\((-a^2+7a-6)x+2y=4\)に代入して式を求めると

$$y=-2x+2$$

\(ax+y=a\)に代入して式を求めると

$$y=-2x+2$$

となり、それぞれは同じ式になってしまいます。

これでは、交点を持ってしまうので問題の条件を満たさないことになってしまいます。

よって、\(a=2\)は答えとしてNGということになります。

 

 

以上より

今回の問題の答えは

解答

$$a=3$$

まとめ

お疲れ様でした!

難しい問題ではありましたが、連立方程式や一次関数に関する知識や考え方をしっかりと身につけておくことができれば対応することのできた問題でしたね!

応用力を高めていくためには、こうやってたくさんの問題に挑戦して知識の引き出しを作っていくことが大切です。

 

恐れず、どんどん難しい問題に挑戦していきましょう!

【中3受験生へ】この力を身につけたら本番で60点は楽勝にとれる!


頑張っているのに思うように成績が上がらず、
「このままだと本番で数学60点が厳しいかも…」
と不安に感じているあなた。

もしかして、
このような問題に直面していませんか?
  • 模試になると点がガクッと落ちる
  • 復習のやり方が分からない
  • 勉強してもすぐに忘れる
  • 凡ミスが直らない
  • 家だと集中して勉強できない
  • 問題集を買っても、1人で解けなくて途中でやめてしまう
  • 友人が点を伸ばしていて焦る
  • 頑張りたいから何をすればいいか教えて欲しい

僕が2年前に指導させてもらった中3のAくん
彼がまさにこのような状態でした。
 
すごく勉強したのに試験の結果が36点…
 
「どうすればいいか分からない…」
「点を上げれる自信がない…」
 
自信をなくし落ち込んでいましたが、
ある勉強方法を取り入れたことによって
Aくんは大変身!
 
なんと、たった2ヶ月で
36点 ⇒ 72点
なんと、驚きの36点UPを達成!

 
何をやっても点が伸びなかったAくん
彼を大変身させた「ある勉強方法」とは、
たったの5分で取り組める簡単なものです。
 
この勉強法を活用した人は、

 

43点 ⇒ 69点



67点 ⇒ 94点



人生初の100点!



 
このように次々と良い結果を報告してくれています^^
 
Aくんを大変身させた「ある勉強法」を
あなたにも活用してもらい
今すぐにでも結果を出して欲しいです。
 
そこで!
ある勉強法が正しく身につくように、
3つのワークを用意しました。
 
こちらのメルマガ講座の中で、
順にお渡ししていくので1つずつ取り組み、
やればやっただけ点が伸びていく感覚を掴んでくださいね!
 
もちろんメルマガ講座の登録は無料!
いますぐワークを受け取っておきましょう('◇')ゞ

     
 




コメントを残す

メールアドレスが公開されることはありません。