【高校入試】小数部分から式の値を求める問題!

【入試問題】

\(2\sqrt{7}-3\)の小数の部分を\(a\)とするとき、\(a^2+5a\)の値を求めよ。

 

まずこちらの問題で確認しておきたいのが

$$(小数部分)=(全体)-(整数部分)$$

で求めることができるという点ですね。

 

小数部分\(a\)の値を求める必要がありますが

まずは整数部分がどうなるのかを考えていきます。

まずは、\(-3\)の部分は置いといて

\(2\sqrt{7}\)がどのような値になるのかを考えます。

このとき、ルートの外にある数は中に入れてから考えるようにしてください、

$$2\sqrt{7}=\sqrt{2^2\times 7}=\sqrt{28}$$

 

そして、この範囲に\(-3\)をすることによって

\(2\sqrt{7}-3\)の整数部分が\(2\)であることが分かりました。

 

整数部分が求まったので、次は小数部分を求めましょう。

 

小数部分が求まったら

あとは、\(a^2+5a\)に代入すれば完成となります。

 

が、ここでも1つ注意があります!!

そのまま代入すると計算が大変すぎるぞ…

 

なので、\(a^2+5a=a(a+5)\)と因数分解をしてから代入するようにしましょう。

入試レベルの問題であれば、式を工夫してから代入することが多いです。

 

$$\begin{eqnarray}a^2+5a&=&a(a+5)\\[5pt]&=&(2\sqrt{7}-5)\{(2\sqrt{7}-5)+5\}\\[5pt]&=&(2\sqrt{7}-5)\times 2\sqrt{7}\\[5pt]&=&28-10\sqrt{7}\cdots(解) \end{eqnarray}$$

 

答え

$$28-10\sqrt{7}$$

 

ちょっと難しい問題だったけど理解できたかな?

式変形や解き方などで分からないところがあれば

コメント欄にてお知らせくださいませ(/・ω・)/

【中3受験生へ】この力を身につけたら本番で60点は楽勝にとれる!


頑張っているのに思うように成績が上がらず、
「このままだと本番で数学60点が厳しいかも…」
と不安に感じているあなた。

もしかして、
このような問題に直面していませんか?
  • 模試になると点がガクッと落ちる
  • 復習のやり方が分からない
  • 勉強してもすぐに忘れる
  • 凡ミスが直らない
  • 家だと集中して勉強できない
  • 問題集を買っても、1人で解けなくて途中でやめてしまう
  • 友人が点を伸ばしていて焦る
  • 頑張りたいから何をすればいいか教えて欲しい

僕が2年前に指導させてもらった中3のAくん
彼がまさにこのような状態でした。
 
すごく勉強したのに試験の結果が36点…
 
「どうすればいいか分からない…」
「点を上げれる自信がない…」
 
自信をなくし落ち込んでいましたが、
ある勉強方法を取り入れたことによって
Aくんは大変身!
 
なんと、たった2ヶ月で
36点 ⇒ 72点
なんと、驚きの36点UPを達成!

 
何をやっても点が伸びなかったAくん
彼を大変身させた「ある勉強方法」とは、
たったの5分で取り組める簡単なものです。
 
この勉強法を活用した人は、

 

43点 ⇒ 69点



67点 ⇒ 94点



人生初の100点!



 
このように次々と良い結果を報告してくれています^^
 
Aくんを大変身させた「ある勉強法」を
あなたにも活用してもらい
今すぐにでも結果を出して欲しいです。
 
そこで!
ある勉強法が正しく身につくように、
3つのワークを用意しました。
 
こちらのメルマガ講座の中で、
順にお渡ししていくので1つずつ取り組み、
やればやっただけ点が伸びていく感覚を掴んでくださいね!
 
もちろんメルマガ講座の登録は無料!
いますぐワークを受け取っておきましょう('◇')ゞ

     
 




コメントを残す

メールアドレスが公開されることはありません。