【高校入試】小数部分から式の値を求める問題!

【入試問題】

\(2\sqrt{7}-3\)の小数の部分を\(a\)とするとき、\(a^2+5a\)の値を求めよ。

 

まずこちらの問題で確認しておきたいのが

$$(小数部分)=(全体)-(整数部分)$$

で求めることができるという点ですね。

 

小数部分\(a\)の値を求める必要がありますが

まずは整数部分がどうなるのかを考えていきます。

まずは、\(-3\)の部分は置いといて

\(2\sqrt{7}\)がどのような値になるのかを考えます。

このとき、ルートの外にある数は中に入れてから考えるようにしてください、

$$2\sqrt{7}=\sqrt{2^2\times 7}=\sqrt{28}$$

 

そして、この範囲に\(-3\)をすることによって

\(2\sqrt{7}-3\)の整数部分が\(2\)であることが分かりました。

 

整数部分が求まったので、次は小数部分を求めましょう。

 

小数部分が求まったら

あとは、\(a^2+5a\)に代入すれば完成となります。

 

が、ここでも1つ注意があります!!

そのまま代入すると計算が大変すぎるぞ…

 

なので、\(a^2+5a=a(a+5)\)と因数分解をしてから代入するようにしましょう。

入試レベルの問題であれば、式を工夫してから代入することが多いです。

 

$$\begin{eqnarray}a^2+5a&=&a(a+5)\\[5pt]&=&(2\sqrt{7}-5)\{(2\sqrt{7}-5)+5\}\\[5pt]&=&(2\sqrt{7}-5)\times 2\sqrt{7}\\[5pt]&=&28-10\sqrt{7}\cdots(解) \end{eqnarray}$$

 

答え

$$28-10\sqrt{7}$$

 

ちょっと難しい問題だったけど理解できたかな?

式変形や解き方などで分からないところがあれば

コメント欄にてお知らせくださいませ(/・ω・)/

数学の成績が落ちてきた…と焦っていませんか?

数スタのメルマガ講座(中学生)では、
以下の内容を無料でお届けします!
メルマガ講座の内容

① 基礎力アップ!点をあげるための演習問題
② 文章題、図形、関数のニガテをなくすための特別講義
③ テストで得点アップさせるための限定動画
オリジナル教材の配布など、様々な企画を実施!

今なら登録特典として、「高校入試で使える公式集」をプレゼントしています!

 
数スタのメルマガ講座を受講して、一緒に合格を勝ち取りましょう!
 
 




コメントを残す

メールアドレスが公開されることはありません。