【方程式】分母にxがあるときの解き方は?

なんじゃこりゃ!?

$$\large{\frac{1}{x}=2}$$

$$\large{\frac{x}{x+2}=5}$$

$$\large{\frac{1}{x}=x}$$

$$\large{\frac{1}{x}+x=2}$$

分母に\(x\)があるから困ってしまうぞ…

 

今回は、そんな場合の解き方について解説していきます。

理科の濃度計算などでよく出てくる方程式ですね。

 

今回の記事はこちらの動画でも解説しています(^^)

分母にxの解き方!

分数の方程式は、とにかく…

分母をはらう!

というのがポイントとなります。

 

それは分母に\(x\)があっても同じこと

こうすることによって、方程式を普通の形に変形することができます!

 

 

それでは、このやり方で方程式を解いていきましょう。

$$\large{\frac{1}{x}=2}$$

両辺に\(x\)を掛けると

$$\large{\frac{1}{x}\times x=2\times x}$$

$$\large{1=2x}$$

$$\large{x=\frac{1}{2}}$$

 

$$\large{\frac{x}{x+2}=5}$$

両辺に\((x+2)\)を掛けると

$$\large{\frac{x}{x+2}\times (x+2)=5\times (x+2)}$$

$$\large{x=5x+10}$$

$$\large{x-5x=10}$$

$$\large{-4x=10}$$

$$\large{x=-\frac{5}{2}}$$

 

$$\large{\frac{1}{x}=x}$$

両辺に\(x\)を掛けると

$$\large{\frac{1}{x}\times x=x\times x}$$

$$\large{1=x^2}$$

$$\large{x=\pm 1}$$

 

$$\large{\frac{1}{x}+x=2}$$

両辺に\(x\)を掛けると

$$\large{\left( \frac{1}{x}+x\right) \times x=2\times x}$$

$$\large{1+x^2=2x}$$

$$\large{x^2-2x+1=0}$$

$$\large{(x-1)^2=0}$$

$$\large{x=1}$$

 

まとめ

とにかく分母をはらう!

これが大事ですね。

高校数学になると、このような計算をする場面が増えてきます。

分母に\(x\)が出てきても慌てることなく対応していきましょうね(^^)

成績を上げて、志望校合格を勝ち取りたい中3生の方!

数スタの無料メルマガ講座で合格を勝ち取りませんか?

中3受験生向け、メルマガ講座の内容

① 基礎力アップ!点をあげるための演習問題

② 文章題、図形、関数のニガテをなくすための特別講義

③ わからないを解決!質問対応サポート

④ オリジナル教材の配布など、様々な企画を実施!


今なら登録特典として、「高校入試で使える公式集」をプレゼントしています!

数スタのメルマガ講座を受講して、一緒に合格を勝ち取りましょう!

 

 

コメントを残す

メールアドレスが公開されることはありません。