今回は中2で学習する『式の計算』の単元から
単項式、多項式がそれぞれ何次式になるのか?
係数や次数ってなに?
という問題について解説していきます。
今回の記事は、こちらの動画でも解説しています(/・ω・)/
単項式の次数
数や文字についての乗法だけでできている式を単項式といいます。
$$3x, -4ab, 2a^5, -\frac{2}{3}$$
このように項が1つしかない式が単項式ですね。
そして
文字の項で、文字にかけてある数の部分を係数
かけあわされている文字の個数を、その式の次数といいます。
また、次数が2の式を2次式といいます。
同様に次数が3であれば3次式、4であれば4次式というように
その式が何次式であるかを判断します。
つまり、式の次数を調べれば何次式になるかがわかるということです。
それでは、次の単項式の係数、次数、何次式?について考えてみましょう。
$$\LARGE{4a^2b}$$
$$\LARGE{-\frac{a}{4}}$$
多項式の次数
単項式の和の形で表された式を多項式といいます。
$$2a-b, x^2+3x+4, 2xy^3-4x$$
このように項が複数ある式が多項式ですね。
多項式の次数を考える場合には
そして、各項の次数のうち、1番大きいものを、その式の次数とします。
このように多項式の次数を求める場合には
まずは、式を項ごとに分けて
それぞれの次数の中から1番大きい数字を、その多項式の次数とします。
それでは、次の多項式の問題について考えてみましょう。
$$\LARGE{x^2+4x-5}$$
$$\LARGE{-\frac{a}{2}+3b-2}$$
練習問題に挑戦!
下のア~カの式について、次の問いに答えなさい。
ア \(2x+3y\) イ \(-mn\) ウ \(a^2-a+6\)
エ \(5a^2b\) オ \(8\) カ \(\displaystyle \frac{x^3}{2}+4xy-y^2\)
(1)単項式と多項式に分け、記号で答えなさい。
(2)ウの式の項と係数を答えなさい。
(3)2次式をすべて選び記号で答えなさい。
まとめ
お疲れ様でした!
次数や係数については、これでバッチリですね(^^)
単項式と多項式では次数の求め方がちょっと違ったので
それぞれの求め方について、しっかりと覚えておきましょう!
単項式の場合 ⇒ かけあわされている文字の個数が次数
多項式の場合 ⇒ 各項の次数の中から一番大きい数が、その式の次数
コメント失礼します。
2次式、3次式、4字式と記載されておりましたが、正しくは 【二次式】【三次式】
【四次式】と表記するのではないでしょうか?
以前、恩師に 何故漢字を使用するのか、『三角形を“3角形”と表記しないのと同じ』と教えて頂いたことがありますので…
>また、次数が2の式を2次式といいます。
同様に次数が3であれば3次式、4であれば4次式というように
コメントありがとうございます。
記事作成にあたって参考にさせていただいた「東京書籍」さんの文献では1次式、2次式…という表記になっておりました。
私個人としては、1次式、一次式の表記はどちらでもよいものかと思っておりましたが、その判断に自信はありません(^^;)
明確な答えにならず申し訳ありません…
私は中国人ですが、個人として答えさせていただきます。
三角形、二次会、一石二鳥など、我々の生活の中で、すでに定着した表現は漢字で表示します。
1次式、2次式、3次式、4次式…同じく1冊本、2冊本、3冊本、4冊本などのように、定着しない表現はアラビア数字で表示します。「ただ物を数える」のイメージを控えましょう。
とても参考になりました!
ありがとうございます^^
コメント失礼いたします。
自分現在中二なのですが数学の授業中に1次式などと漢数字ではないほうで書いてしまい、
先生に注意を受けました。
やはり漢数字で書いたほうがいいのではないかと思うところがあるのですがどうなのでしょうか?
これは教科書によって指導方法が異なるようですね…
学校の先生が指導されたやり方でいきましょう!
とてもわかりやすくて参考になりました!
ありがとうございました
現在、中二なのですが、定期テストで間違えてしまい、よく分からなかったのですがこのサイトの解説で理解することができました。
ありがとうございます
お役に立てて良かったです^^
よくわかりましたありがとうございます