【直線と直線の距離】平行な2直線の距離を求める方法を解説!サクッと解けちゃうぞ!

今回は、「平行な2直線の距離」を求める問題について解説していきます。

直線と直線の距離とは、次のような問題ですね。

【問題】

2直線 \(5x+4y=10\)、\(5x+4y=30\)の間の距離を求めなさい。

 

この問題を解くためには、点と直線の距離を求める公式を使いこなせる必要があります。

ちょっと不安だ…という方は

>【点と直線の距離】公式の覚え方と使い方をイチから解説するぞ!

こちらの記事で確認しておいてください。

【直線と直線の距離】平行な2直線の距離を求める方法を解説!

それでは、問題を解いてみましょう。

【問題】

2直線 \(5x+4y=10\)、\(5x+4y=30\)の間の距離を求めなさい。

手順はとってもシンプルです。

平行な2直線の距離を求める手順!

  1. 直線上の点の座標を求める
  2. ①の点ともう一方の直線の距離を求める
  3. 完成!

それでは、手順に従ってやっていきましょう。

まずは、直線上の点の座標を求めます。

\(5x+4y=10\) の式に \(y=0\) を代入すると

$$\begin{eqnarray}5x&=&10\\[5pt]x&=&2 \end{eqnarray}$$

つまり、\(5x+4y=10\) の直線上に\((2,0)\) という点があるということが分かります。

直線上の点の座標を求めるとき

今後の計算をなるべくラクにしたいので、\(x=0\) もしくは\(y=0\) を代入してシンプルな値の座標を求めましょう。

 

次に、\((2,0)\) ともう一方の直線\(5x+4y=30\) の距離を求めましょう。

点と直線の距離を求める公式点\((x_1,y_1)\)と直線\(ax+by+c=0\)の距離

$$\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}$$

 

$$\begin{eqnarray}\frac{|10+0-30|}{\sqrt{5^2+4^2}}&=&\frac{20}{\sqrt{41}} \\[5pt]&=&\frac{20\sqrt{41}}{\sqrt{41}}\end{eqnarray}$$

これで完成!

 

平行な2直線の距離を求める公式はありません。

なので、点と直線の距離の公式を用いて求めていきます。

点と直線の公式に当てはめるためには、点の座標が必要ですね。

というわけで、まずは点の座標を求める!というわけです。

 

考え方と手順を知ってしまえば、とっても簡単な問題でしたね(^^)

【直線と直線の距離】平行な2直線の距離の求め方まとめ!

お疲れ様でした!

最後に手順を確認しておきましょう。

平行な2直線の距離を求める手順!

  1. 直線上の点の座標を求める
  2. ①の点ともう一方の直線の距離を求める
  3. 完成!

 

今回の問題は意味が分かれば簡単なものです。

サクッと得点しちゃいましょう(/・ω・)/

 

【中3受験生へ】この力を身につけたら本番で60点は楽勝にとれる!


頑張っているのに思うように成績が上がらず、
「このままだと本番で数学60点が厳しいかも…」
と不安に感じているあなた。

もしかして、
このような問題に直面していませんか?
  • 模試になると点がガクッと落ちる
  • 復習のやり方が分からない
  • 勉強してもすぐに忘れる
  • 凡ミスが直らない
  • 家だと集中して勉強できない
  • 問題集を買っても、1人で解けなくて途中でやめてしまう
  • 友人が点を伸ばしていて焦る
  • 頑張りたいから何をすればいいか教えて欲しい

僕が2年前に指導させてもらった中3のAくん
彼がまさにこのような状態でした。
 
すごく勉強したのに試験の結果が36点…
 
「どうすればいいか分からない…」
「点を上げれる自信がない…」
 
自信をなくし落ち込んでいましたが、
ある勉強方法を取り入れたことによって
Aくんは大変身!
 
なんと、たった2ヶ月で
36点 ⇒ 72点
なんと、驚きの36点UPを達成!

 
何をやっても点が伸びなかったAくん
彼を大変身させた「ある勉強方法」とは、
たったの5分で取り組める簡単なものです。
 
この勉強法を活用した人は、

 

43点 ⇒ 69点



67点 ⇒ 94点



人生初の100点!



 
このように次々と良い結果を報告してくれています^^
 
Aくんを大変身させた「ある勉強法」を
あなたにも活用してもらい
今すぐにでも結果を出して欲しいです。
 
そこで!
ある勉強法が正しく身につくように、
3つのワークを用意しました。
 
こちらのメルマガ講座の中で、
順にお渡ししていくので1つずつ取り組み、
やればやっただけ点が伸びていく感覚を掴んでくださいね!
 
もちろんメルマガ講座の登録は無料!
いますぐワークを受け取っておきましょう('◇')ゞ

     
 




コメントを残す

メールアドレスが公開されることはありません。