数スタ運営部

数スタの公式LINEを開設しました!

友だち追加

【くじ引きの確率】くじを戻す、戻さないそれぞれの問題を解説!

今回は、中学・高校数学で学習するレベルの確率から

『くじ引きの確率』

について解説していきます。

 

取り上げるの次の問題

~くじを戻さない~

当たりくじを3本含む10本のくじがある。このくじをA、Bの2人が順に1本ずつ引く。ただし、引いたくじは元に戻さないものとする。

 

(1)Aが当たる確率

 

(2)A、Bともに当たる確率

 

(3)Bが当たる確率

 

 

~くじを戻す~

当たりくじを3本含む10本のくじがある。このくじをA、Bの2人が順に1本ずつ引く。ただし、引いたくじは元に戻すものとする。

 

(1)Aが当たる確率

 

(2)A、Bともに当たる確率

 

(3)Bが当たる確率

 

 

くじを元に戻さないパターン

当たりくじを3本含む10本のくじがある。このくじをA、Bの2人が順に1本ずつ引く。ただし、引いたくじは元に戻さないものとする。

(1)Aが当たる確率

これは超簡単だね!

一番最初にくじを引くAさん

全体のくじが10本あり、その中に当たりが3本あるのだから確率は

$$\LARGE{\frac{3}{10}}$$

となります。

 

(2)A、Bともに当たる確率

Aが当たり、続いてBも当たる確率を考えてみましょう。

まず最初にくじを引くAが当たる確率は、(1)で求めたように\(\displaystyle{\frac{3}{10}}\)となります。

そして、次にBがくじを引くのですが、そのとき残っているくじは…

はずれが7本、当たりが2本の計9本になっています。

つまり、1回目にAが当たった場合に、2回目にBが当たりを引く確率は\(\displaystyle{\frac{2}{9}}\)となります。

 

よって、確率は

このようになります。

 

(3)Bが当たる確率

2番目にくじを引くBさんが当たるということは、次のパターンが考えられます。

よって、Bが当たる確率を求めたいとき

Aはずれ ⇒ B当たり

A当たり ⇒ B当たり

それぞれのパターンの確率を求め、その確率を合計することで求めていきます。

 

まず、AがはずれてからBが当たる確率

 

次は、Aが当たってBも当たる確率

 

 

以上より、Bが当たる確率は

このようになります。

 

くじを元に戻さないパターンでは、2回目にくじを引くとき、はずれと当たりがそれぞれ何本ずつ残っているのかを考えることが大事ですね!

 

更に、注目してほしいのは

1回目にくじを引いて当たりを引く確率(1)

2回目にくじを引いて当たりを引く確率(3)

がそれぞれ\(\displaystyle{\frac{3}{10}}\)となっており、確率が等しいことが分かります。

 

つまり、くじ引きは最初に引いても、後から引いても計算上は当たる確率が一緒ってことだね!

 

『残り物には福がある』

なんて言ったりしますが、数学的には

どっちも一緒や!

ということです。

 

スポンサーリンク

くじを元に戻すパターン

当たりくじを3本含む10本のくじがある。このくじをA、Bの2人が順に1本ずつ引く。ただし、引いたくじは元に戻すものとする。

(1)Aが当たる確率

1回目にくじを引く人は、くじを元に戻す戻さないは関係ありませんね。

よって、Aが当たる確率は

$$\LARGE{\frac{3}{10}}$$

となります。

 

(2)A、Bともに当たる確率

引いたくじを元に戻すということだから、1回目にくじを引くAと2回目にくじを引くBは条件が同じになります。

よって、確率は

このようになります。

 

(3)Bが当たる確率

くじを元に戻さない場合でやったように、Bが当たるというのは

この2パターン考えられます。

 

これらを、くじを戻す場合で考えてみると

このように求めることができます。

 

 

よって、Bが当たる確率は

$$\large{\frac{21}{100}+\frac{9}{100}}$$

$$\large{=\frac{30}{100}}$$

$$\large{=\frac{3}{10}}$$

となります。

 

結局、AとB

どちらも当たる確率は一緒だな

ってことが分かりますね。

 

 

くじを元に戻す場合には、はずれ当たりの本数は変化しません。

なので、何回目であっても当たり、はずれの確率は同じとして考えていくことができますね。

 

まとめ

お疲れ様でした!

くじ引きの問題では、問題文に書いてある

くじを戻す、戻さない

というワードが非常に大事です。

 

ここを見落としてしまうと考え方が破綻してしまいます…

見落としがないよう、問題文を細かくチェックするようにしましょう。

 

そして、くじを元に戻さない場合では

2回目にくじを引く人は、1回目の人が何を引いたのかによって確率が変わってきてしまいます。

状況を考えながら、はずれ当たりくじが何本ずつ残っているのかをしっかりと判断して考えていくようにしましょう!

 

以上(/・ω・)/

 

スポンサーリンク

効率よく学習を進めていきたい方は必見!

この記事を通して、学習していただいた方の中には


もっといろんな単元の学習を進めていきたい!

という素晴らしい学習意欲を持っておられる方もいる事でしょう。

だけど

どこの単元を学習すればよいのだろうか。

何を使って学習すればよいのだろうか。

勉強を頑張りたいけど 何をしたらよいか悩んでしまって

手が止まってしまう…

そんなお悩みをお持ちの方もおられるのではないでしょうか。

そんなあなたには

スタディサプリを使うことをおススメします。

スタディサプリを使うことで

どの単元を学習すればよいのか 何を解けばよいのか

そういった悩みを全て解決することができます。

スタディサプリでは学習レベルに合わせて授業を進めることが出来るほか、たくさんの問題演習も行えるようになっています。

スタディサプリが提供するカリキュラム通りに学習を進めていくことで

何をしたらよいのか分からない…

といったムダな悩みに時間を割くことなく

ひたすら学習に打ち込むことができるようになります(^^)

また、スタディサプリにはこのようなたくさんのメリットがあります。

スタディサプリ 7つのメリット
  1. 費用が安い!月額1980円で全教科全講義が見放題です。
  2. 基礎から応用まで各レベルに合わせた講義が受けれる
  3. 教科書に対応!それぞれの教科に沿って学習を進めることができる
  4. いつでもどこでも受講できる。時間や場所を選ばず受講できます。
  5. プロ講師の授業はていねいで分かりやすい!
  6. 都道府県別の受験対策もバッチリ!
  7. 合わないと感じれば、すぐに解約できる。
スタディサプリを活用することによって

今までの悩みを解決し、効率よく学習を進めていきましょう。

「最近、成績が上がってきてるけど塾でも通い始めたの?」

「どんなテキスト使ってるのか教えて!」

「勉強教えてーー!!」

スタディサプリを活用することで どんどん成績が上がり

友達から羨ましがられることでしょう(^^)

今まで通りの学習方法に不満のない方は、スタディサプリを使わなくても良いのですが

学習の成果を高めて、効率よく成績を上げていきたい方

是非、スタディサプリを活用してみてください。

スタディサプリでは、14日間の無料体験を受けることができます。

まずは無料体験受講をしてみましょう!

⇓  ⇓  ⇓  ⇓  ⇓  ⇓  ⇓

スタディサプリ小・中学講座

スタディサプリ高校講座

コメントを残す

メールアドレスが公開されることはありません。