メールアドレス1つでかんたんに受け取れます!

お子さまの家庭学習に最適な教材を用意しています。お見逃しなく!

【無料】中学基礎UPの教材を受け取る!

【中3因数分解】置き換えを利用した解き方を解説!

こんにちは!数スタの小田です。

今回は中3で学習する「因数分解」の単元から、置き換えを利用した解き方について解説していきます。

取り上げるのはこちらの3題!

次の式を因数分解しなさい。

(1) \((x-2)^2-2(x-2)-35\)

(2) \((a+b)^2-16\)

(3)\(ab-4a-b+4\)

うげぇ…めっちゃ複雑そうなんだけど…

 

たしかに!

発展的な問題になるんだけど、これが解けるようになれば定期テストでも高得点まちがいなしだ!

だから、がんばって理解していこう(^^)

 

(1)同じ部分は置き換えろ!

次の式を因数分解しなさい。

(1) \((x-2)^2-2(x-2)-35\)

それでは、最初の問題の解き方を解説していきます。

解き方のポイントは

同じ部分は置き換えろ!

です。

 

どういうことかと言うと

因数分解したい式に、このような同じ部分が含まれている場合

 

置き換えという考え方を利用してやります。

 

そうすることによって、複雑だった式がシンプルになりますね!

$$\large{A^2-2A-35}$$

あとは、この式を因数分解していけば良いです。

 

$$\large{A^2-2A-35}$$

$$\large{=(A-7)(A+5)}$$

 

因数分解が完成したら置き換えていたAを元に戻してやります。

$$\large{=\{ (x-2)-7\}\{(x-2)+5\}}$$

$$\large{=(x-9)(x+3)}$$

これで完成となります!

 

初めは複雑な式で、どのように因数分解していけばいいのか分かりにくかったですが、同じ部分を置きかえしてあげることでシンプルな方法で解くことができましたね(^^)

 

では、解法をまとめておきます。

\(x-2=A\)とおくと

$$\large{(x-2)^2-2(x-2)-35}$$

$$\large{=A^2-2A-35}$$

$$\large{=(A-7)(A+5)}$$

$$\large{=\{ (x-2)-7\}\{(x-2)+5\}}$$

$$\large{=(x-9)(x+3)}$$

答え

$$(1)(x-9)(x+3)$$

(2)かたまりを文字で置いてみると…?

次の式を因数分解しなさい。

(2) \((a+b)^2-16\)

(1)のように同じ部分があるわけではないんですが、\((a+b)\)のかたまりを文字で置いてあげると…

このように『2乗-2乗』の形がつくれるので、上手いこと因数分解をしていくことができますね!

最初に2乗を展開してしまうと、困ったことになってしまうので注意です…(^^;)

答え

$$(2)(a+b+4)(a+b-4)$$

 

(3)同じ部分が無い場合には!?

次の式を因数分解しなさい。

(3)\(ab-4a-b+4\)

それでは、次にこちらの問題を考えてみましょう。

よっしゃ!置き換えを利用すればええんじゃろ?

余裕だぜっ!!

って、あれぇぇぇ

同じ部分がないやんけっ!

 

同じように置き換えを利用して解きたかったのですが、同じ部分が見つからず困ってしまいます…

 

そんなときには

同じ部分を発掘するのだ!

 

因数分解したい式を前半と後半部分に分けてしまいます。

 

そして、それぞれの部分を因数分解してやります。

 

そうすることによって、同じ部分\((b-4)\)を発掘することができました!

 

同じ部分が発掘できたら、あとは置き換えを利用していけば良いですね。

$$\large{ab-4a-b+4}$$

$$\large{=a(b-4)-(b-4)}$$

\(b-4=A\)とおくと

$$\large{=aA-A}$$

$$\large{=A(a-1)}$$

$$\large{=(b-4)(a-1)}$$

これで因数分解が完成しました!

 

今回の式のように同じ部分が見つからない…という場合

前半、後半に分けて因数分解をしてあげることで、同じ部分を発掘することができることがあります。

 

答え

$$(3)(b-4)(a-1)$$

練習問題で理解を深める!

それでは、置き換えを利用した因数分解の理解を深めるために練習問題を解いてみましょう!

次の式を因数分解しなさい。

$$\large{(x-3)^2+5(x-3)-6}$$

解説&答えはこちら
解答

$$\large{(x+3)(x-4)}$$

 

\(x-3=A\)とおくと

$$\large{(x-3)^2+5(x-3)-6}$$

$$\large{=A^2+5A-6}$$

$$\large{=(A+6)(A-1)}$$

$$\large{=\{ (x-3)+6\}\{(x-3)-1\}}$$

$$\large{=(x+3)(x-4)}$$

 

次の式を因数分解しなさい。

$$\large{ab+ac-3b-3c}$$

解説&答えはこちら
解答

$$\large{(b+c)(a-3)}$$

 

$$\large{ab+ac-3b-3c}$$

$$\large{=a(b+c)-3(b+c)}$$

\(b+c=A\)とおくと

$$\large{=aA-3A}$$

$$\large{=A(a-3)}$$

$$\large{=(b+c)(a-3)}$$

【特典】忘れ防止にこのプリントを!

よっしゃ!これで置き換えの因数分解は完璧だ~!!

と…言いたいところなんですが(^^;)

 

僕の教え子さん達を見ていると、

教えた直後はできてるんだけど、しばらく経ってテスト前になるとすっかり忘れてる…

なんてことがあります。

 

というのも、置き換えの因数分解は発展的な問題ってこともあって、教科書やワークで取り上げている演習問題が少なかったりするんですね。

なので、演習不足によってどんどん忘れていっちゃう…ということが起こります(=_=)

 

というわけで!

演習不足を防いで、今回学んだことをしっかりと定着させるための追加演習を用意しました。

僕の教え子さんには、今回の内容をやってから3,4日後くらいに取り組ませるようにしています。そうすることで忘れかけていた知識がよみがえってきて、理解の定着につながるからですね^^

ぜひみなさんも活用してみてください(‘ω’)ノ

「名前(ニックネームでOK)」「メールアドレス」を入力すれば無料で受け取れます^^

(ご登録いただいたメールアドレスに教材を送らせていただきます)

【演習課題】置き換えの因数分解


 

ご登録いただいたメールアドレス宛に随時、基礎力をアップさせる演習課題をお届けしていく予定!

このメルマガは簡単に配信解除できますので、気軽にご活用ください^^

まとめ

お疲れ様でした!

複雑な式の因数分解では、同じ部分が見つかれば置き換えを利用することで簡単に解くことができます。

 

もっと難しい因数分解に挑戦したい方は、こちらの問題をやってみましょう!

これが解けるようになれば中学レベル卒業だ!!

【高校入試】因数分解の難問を解説!難関高校の入試問題に挑戦しよう!

 

 

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です