こちらに講座の受講者さんからいただいた声、合格報告をまとめているので参考にしてみてくださいね^^

⇒  【口コミ】数スタのメルマガ講座ってどうなの?安心して利用できるの?

高さがわからない二等辺三角形の面積の求め方!三平方の定理を使えばバッチリ!

二等辺三角形の面積を求めなさい。

 

あれ…

高さがわからないけど、どうすんの!?

 

受験レベルの問題に挑戦していくと

このような応用問題に出会うことがあります。

 

このよう場合には

中3の終盤で学習する『三平方の定理』を用いて

高さを求めていくようになります。

 

今回は、三平方の定理を用いて

二等辺三角形の高さを求める方法について

徹底解説していきます!

 

二等辺三角形の高さを求める方法

上でも言ったように

二等辺三角形の高さを求めるためには

三平方の定理というものを利用していきます。

というわけで、少しだけ三平方の定理について確認しておきましょう。

 

三平方の定理の基本公式

直角三角形において

斜辺の長さを2乗すると、他の辺の長さの2乗の和に等しくなる。

というのが三平方の定理でした。

 

 

具体的には、こういうことでしたね。

 

 

そして、直角三角形の中でも

特別な存在のやつらがいました。

45°、45°、90°という角を持つ直角二等辺三角形は

辺の長さの比が\(1:1:\sqrt{2}\)となる。

 

30°、60°、90°という角を持つ直角三角形は

辺の長さの比が\(1:2:\sqrt{3}\)となる。

 

というような特徴がありました。

詳しくはこちらの記事で解説しているので参考にしてね。

【三平方の定理】覚えておきたい基本公式を解説!

 

これらのことを踏まえた上で

二等辺三角形の高さの求め方について解説を進めていきます。

二等辺三角形を2分割して高さを求める!

二等辺三角形の高さを求めるためには

頂角から垂直に線を引いて

二等辺三角形を2分割してやります。

 

すると、二等辺三角形の特徴から

底辺の長さが二等分されるんですね。

 

 

今回の問題で考えると

こういうことになります。

 

次に、直角三角形に注目して

三平方の定理を使って高さを求めていきましょう。

$$5^2=3^2+x^2$$

$$25=9+x^2$$

$$x^2=16$$

$$x=\pm 4$$

\(x>0\)だから

$$x=4$$

 

このようにして二等辺三角形の高さを求めることができます。

 

高さを求めることができれば

$$(三角形の面積)=(底辺)\times(高さ)\times\frac{1}{2}$$

なので

$$3\times4\times \frac{1}{2}=6 cm^2$$

このように面積を求めることができました。

 

二等辺三角形の高さを求める手順
  1. 頂角からまっすぐな線を引く
  2. 底辺が2等分される
  3. 直角三角形を見つけて三平方の定理を使う

 

それでは、いくつか練習問題を通して

理解を深めておきましょう。

演習問題で理解を深める!

次の二等辺三角形の面積を求めなさい。

(1)答えはこちら

(1)答え

$$12 cm^2$$

頂角からまっすぐな線を引いて高さを求めていきましょう。

$$5^2=4^2+x^2$$

$$25=16+x^2$$

$$x^2=9$$

$$x=\pm 3$$

\(x>0\)だから

$$x=3$$

 

よって、面積は

$$8\times3\times\frac{1}{2}=12 cm^2$$

 

(2)答えはこちら

(2)答え

$$3\sqrt{7} cm^2$$

頂角からまっすぐな線を引いて高さを求めていきましょう。

$$4^2=3^2+x^2$$

$$16=9+x^2$$

$$x^2=7$$

$$x=\pm \sqrt{7}$$

\(x>0\)だから

$$x=\sqrt{7}$$

 

よって、面積は

$$6\times\sqrt{7}\times\frac{1}{2}=3\sqrt{7} cm^2$$

 

直角二等辺三角形の場合は?

直角二等辺三角形の場合

このように1辺しか長さを教えてもらえませんが

高さを求めることができます。

 

直角二等辺三角形って

このように角度がわかります。

これは特別な直角三角形だから

比が使えるやつだね!

 

そして

先ほどと同じように頂角からまっすぐな線を引いて考えていくと

$$1:1=2:x$$

$$x=2$$

このように比を使っていくことで

高さを求めることができます。

 

面積は

$$4\times\ 2 \times \frac{1}{2}=4 cm^2$$

となります。

 

直角二等辺三角形の場合

45°、45°、90°の特別な直角三角形なので

\(1:1:\sqrt{2}\)の比を使って高さを求めていく!

 

正三角形の場合は?

正三角形の場合はどうでしょうか?

この場合も長さが1辺しかわからなくてもOKです。

正三角形の角度は

このように全て60°になっているので

頂角からまっすぐな線を引いて

直角三角形を作ってやると

30°、60°、90°の特別な直角三角形になります。

$$1:\sqrt{3}=2:x$$

$$x=2\sqrt{3}$$

 

よって、面積は

$$4\times 2\sqrt{3}\times \frac{1}{2}=4\sqrt{3} cm^2$$

となります。

 

正三角形の場合

頂角からまっすぐな線を引くと

30°、60°、90°の特別な直角三角形が作れるので

\(1:2:\sqrt{3}\)の比を使って高さを求めていく!

 

2学期からでも最短で結果を出す!遅れを取り戻して一気に入試レベルまで引き上げる新講座

2学期に入り、入試が目前に迫ってきました。

「模試の点数が下がってしまった…」

「このままで大丈夫なのか…入試への不安が大きくなってきた」

「ウチの子がなかなか本気になってくれない」などなど

受験に対する悩みは尽きないですよね(^^;)



夏休みの施策が上手くいき、成績をガツンと伸ばすことに成功した方はこの調子でがんばっていけばOK!

一方で、現状の成績に不安を感じている、夏の遅れを取り戻したい…と感じている方は、

 

「入試過去問」×「王道パターン」×「動画」

 

この3つの要素を組み合わせた学習法を取り入れてみましょう。

そうすることで、ここからでも短期間でも成績を伸ばすことが可能です!

 

僕が教えてきた生徒さんの中でもこの学習法を取り入れることで、

 

2学期の時点で偏差値40前半


入試本番で70点をクリア!(おそらく偏差値55くらい)



 

このような劇的UPを達成しているんですよ^^

ニガテな数学でこれだけ点を伸ばすことができれば、すっごく余裕ができますよね!

他にも次のような効果を実感することができます。

icon-check-square-o  ニガテな数学がどんどん解けるようになって、勉強に自信がつく!他教科もがんばれるようになる。

  動画を使ってお子さん1人でも学びを完結できる。親は見守っているだけで勝手に成長、点を伸ばしていく!

icon-check-square-o  やったところがテストに出るので、遠回りすることなく最短で点数UPにつながる!次の模試で効果を実感できるかも!

icon-check-square-o  塾に通わせなくても自宅だけで完結!時間、労力、費用を節約しながら効率よく合格をつかみとる!

icon-check-square-o  受験だけでなく、高校進学後にも活きる数学の土台ができあがる!

 

今回はそんな「入試過去問」×「王道パターン」×「動画」という効率よく点数を伸ばしていく3要素を取り入れた教材を用意しました。

それがこちらです!



 

2週間ほどで完成できるカリキュラムになっているので、今すぐ取り組み始めて今後の学習に活きる入試数学の土台を作り上げてくださいね!

 

 

二等辺三角形の高さの求め方 まとめ

二等辺三角形の高さを求めるためには

まず、頂角からまっすぐな線を引きましょう!

すると、直角三角形を作ることができるので

そこから三平方の定理を使ったり

 

 

角度がわかる場合には比を取って

高さを求めてきます。

 

 

以上!

二等辺三角形の高さがわからないときに

面積を求める問題の解説でした。

 

図形問題において

三平方の定理ってすっごく活用しやすいから

しっかりと覚えておこうね!

ファイトだー(/・ω・)/

 

 

2 件のコメント

  • コメントを残す

    メールアドレスが公開されることはありません。 が付いている欄は必須項目です