【中学数学】ひもの長さが最短になるのはどんなとき??

今回は中3で学習する三平方の定理の単元から

「ひもの長さが最短になるのは??」

という問題についてサクッと解説します。

 

こんな問題のことですね!

【問題】

頂点Bから線分CFを通って頂点Gまでひもをかける。

このとき、ひもが最短となるときの長さを求めなさい。

 

パッと見では難しそうな問題ですが、

ポイントをおさえておけば楽勝だぜ★

ひもの長さが最短になるのはどんなとき??

【問題】

頂点Bから線分CFを通って頂点Gまでひもをかける。

このとき、ひもが最短となるときの長さを求めなさい。

 

 

では、こちらの問題の解き方を確認していきましょう。

空間図形のままでは、ひもの長さを考えるのが難しいです。

なので、ひもが通っているところの展開図を書いて、

平面で考えていきます。

すると、ひもの長さっていうのも考えやすくなりますね(^^)

 

そして、ひもが最短になるというのは…

このように点と点を直線で結んだときの長さになります

 

よって、ひもが最短になる長さとは

展開図を書いたときのBGの長さと同じってことですね!

 

このことが理解できたら

あとは、三平方の定理を使って長さを求めていきましょう。

 

よって、ひもが最短となる長さは\(3\sqrt{5}cm\)となりました。

答え

$$3\sqrt{5}cm$$

 

ひもが最短になる問題。

これのポイントは、展開図を書いて直線で結んだときの長さと等しい。

っていうことですね(^^)

このことをしっかりと覚えておきましょう。

 

では、他のパターンの例題を見て確認しておきましょう。

円錐のパターンも確認しておこう!

【問題】

底面の直径ABと母線の長さPAについて\(AB=PA=4cm\) の円錐がある。線分PBの中点Cとする。

図のように、この円錐の表面に、点Aから点Cまで、ひもをゆるまないようにかける。

ひもの長さが最も短くなるとき、その長さを求めなさい。

 

円錐のときも同じように展開図を書いて考えます。

ですが、円錐の場合には展開図を書くにあたって

側面であるおうぎ形の中心角を求める必要があります。

 

中心角の求め方は、こちらの裏ワザ公式を利用すると簡単ですね(^^)

円錐の表面積、中心角を求める問題を丁寧に解説!

 

今回の問題では、中心角は…

$$\frac{2}{4}\times 360=180°$$

となります。

 

よって、展開図はこんな感じ。求める長さは赤線の部分となります。

 

よって、三平方の定理を使って次のように長さを求めていきましょう。

よって、ひもが最短となる長さは\(2\sqrt{5}cm\)となりました。

答え

$$2\sqrt{5}cm$$

 

円錐の場合には、展開図を書くために

側面であるおうぎ形の中心角を求める必要があります。

中心角の大きさによって展開図の形が大きく異なってくるので注意ですね!

まとめ!

お疲れ様でした!

ひもが最短となる問題を考えるときには…

展開図を書いて、直線で結ぶ!

これが大切なポイントとなります。

 

このことをしっかりとおさえておいて

たくさん問題を解きながら理解を深めていってくださいね(/・ω・)/

 

成績を上げて、志望校合格を勝ち取りたい中3生の方!

数スタの無料メルマガ講座で合格を勝ち取りませんか?

中3受験生向け、メルマガ講座の内容

① 基礎力アップ!点をあげるための演習問題

② 文章題、図形、関数のニガテをなくすための特別講義

③ わからないを解決!質問対応サポート

④ オリジナル教材の配布など、様々な企画を実施!


今なら登録特典として、「高校入試で使える公式集」をプレゼントしています!

数スタのメルマガ講座を受講して、一緒に合格を勝ち取りましょう!

 

 

コメントを残す

メールアドレスが公開されることはありません。