数スタ運営部

数スタの公式LINEを開設しました!

友だち追加

【変化の割合】簡単な求め方は?一次関数、二乗に比例する関数のやり方

変化の割合は、どんな関数においても次のような式で求めることができます。

だけど、一次関数や二次関数(\(y=ax^2\))において

簡単な求め方があります!

今回の記事では、それぞれの簡単な求め方について確認しておきましょう。

【変化の割合】簡単な求め方 一次関数

一次関数\(y=2x+5\)において、\(x\)が1から4まで増加するときの変化の割合を求めなさい。

一次関数の変化の割合は…

傾きと等しい

というのがポイントです。

 

なので、一次関数の式から傾きを読み取ります。

$$y=\color{red}{2}x+5$$

赤字の部分から傾きが2だということが分かります。

 

よって、変化の割合は2ということになります。

一次関数の変化の割合は、傾きと等しい

ということを覚えておけば、簡単ですね(^^)

変化の割合(一次関数)

傾きと等しくなる!

$$y=\color{red}{a}x+b$$

$$a:変化の割合$$

【変化の割合】簡単な求め方 二次関数

二次関数\(y=3x^2\)において、\(x\)が2から4まで増加するときの変化の割合を求めなさい。

二次関数(\(y=ax^2\))の変化の割合は…

\(x\)が\(m\)から\(n\)まで増加するとき

$$\Large{a(m+n)}$$

という式で、簡単に求めることができます。

 

今回の問題であれば

$$\Large{3(2+4)=3\times 6=18}$$

となります。

 

とっても簡単ですね(^^)

なぜ、こんな式で求めることができるのか?

という点については、こちらの記事で詳しく解説しています。

【変化の割合】二次関数y=ax2の裏ワザ公式?どうやって解くの??

 

変化の割合(二次関数)

二次関数(\(y=ax^2\))の変化の割合は

\(x\)が\(m\)から\(n\)まで増加するとき

$$\Large{a(m+n)}$$

【変化の割合】簡単な求め方は?まとめ!

一次関数、二次関数においては今回紹介したように簡単に求める方法がありました。

しかし、反比例などの関数においては基本通りにそれぞれの増加量を用いて計算する必要があります。

 

今回のような簡単に求める方法だけを覚えるのではなく

こちらの公式を使った解き方についても理解しておきましょう!

【関数】変化の割合の求め方って?公式などをまとめておくよ!

効率よく学習を進めていきたい方は必見!

この記事を通して、学習していただいた方の中には


もっといろんな単元の学習を進めていきたい!

という素晴らしい学習意欲を持っておられる方もいる事でしょう。

だけど

どこの単元を学習すればよいのだろうか。

何を使って学習すればよいのだろうか。

勉強を頑張りたいけど 何をしたらよいか悩んでしまって

手が止まってしまう…

そんなお悩みをお持ちの方もおられるのではないでしょうか。

そんなあなたには

スタディサプリを使うことをおススメします。

スタディサプリを使うことで

どの単元を学習すればよいのか 何を解けばよいのか

そういった悩みを全て解決することができます。

スタディサプリでは学習レベルに合わせて授業を進めることが出来るほか、たくさんの問題演習も行えるようになっています。

スタディサプリが提供するカリキュラム通りに学習を進めていくことで

何をしたらよいのか分からない…

といったムダな悩みに時間を割くことなく

ひたすら学習に打ち込むことができるようになります(^^)

また、スタディサプリにはこのようなたくさんのメリットがあります。

スタディサプリ 7つのメリット
  1. 費用が安い!月額1980円で全教科全講義が見放題です。
  2. 基礎から応用まで各レベルに合わせた講義が受けれる
  3. 教科書に対応!それぞれの教科に沿って学習を進めることができる
  4. いつでもどこでも受講できる。時間や場所を選ばず受講できます。
  5. プロ講師の授業はていねいで分かりやすい!
  6. 都道府県別の受験対策もバッチリ!
  7. 合わないと感じれば、すぐに解約できる。
スタディサプリを活用することによって

今までの悩みを解決し、効率よく学習を進めていきましょう。

「最近、成績が上がってきてるけど塾でも通い始めたの?」

「どんなテキスト使ってるのか教えて!」

「勉強教えてーー!!」

スタディサプリを活用することで どんどん成績が上がり

友達から羨ましがられることでしょう(^^)

今まで通りの学習方法に不満のない方は、スタディサプリを使わなくても良いのですが

学習の成果を高めて、効率よく成績を上げていきたい方

是非、スタディサプリを活用してみてください。

スタディサプリでは、14日間の無料体験を受けることができます。

まずは無料体験受講をしてみましょう!

⇓  ⇓  ⇓  ⇓  ⇓  ⇓  ⇓

スタディサプリ小・中学講座

スタディサプリ高校講座

コメントを残す

メールアドレスが公開されることはありません。