【数学Ⅱ】極限値からの係数決定、なんで分子が0になるの?

今回は数学Ⅱで学習する微分積分の単元から

「極限値からの係数決定」

について学習していきましょう。

 

【問題】(ニューアクションβより)

\(\displaystyle \lim_{ x \to 2 } \frac{x^2+ax-b}{x-2} = 5\) のとき、定数\(a,b\) の値を求めよ。

 

この問題では、分子の極限値が0になることを利用して求めていきます。

ですが、なんで分子が0になるの?

という疑問を抱く人が多いと思います。

なので、その辺を詳しく解説しながら問題を解いていきますね!

分子の極限値が0になることを利用して解く。

【問題】(ニューアクションβより)

\(\displaystyle \lim_{ x \to 2 } \frac{x^2+ax-b}{x-2} = 5\) のとき、定数\(a,b\) の値を求めよ。

 

まず分母の極限値を求めてみましょう。

すると…

\(\displaystyle \lim_{ x \to 2 } (x-2) = 0\)

あれ、分母が0になる…

計算ができないぞ、困ったな…

という状況になってしまいます。

 

 

ですが、分母の極限値が0になる…といったピンチを

チャンスに変えることができます!

 

分子の極限値を次のように考えてみましょう。

 

分母の極限値が0になることを利用すると、

分子の極限値も0になることが導けるのです!

 

\(\displaystyle \lim_{ x \to 2 } (x^2+ax-b) = 0\) になることが分かったので、

$$\begin{eqnarray}\displaystyle \lim_{ x \to 2 } (x^2+ax-b) &=& 0\\[5pt]4+2a-b&=&0\\[5pt]b&=&2a+4 \end{eqnarray}$$

という式を作ることができます。

これを元の式に代入して計算していくと、

問題文より、今求めた\(4+a=5\) になるはずだから

\(a=1\) となります。

 

最後に、\(a=1\) を\(b=2a+4\) に代入すると

\(b=2+4=6\) となります。

 

答え

$$a=1,b=6$$

 

今回の問題でのポイントは、

\(\displaystyle \lim_{ x \to a } \frac{f(x)}{g(x)} = k(定数)\) において、

分母の極限値が0( \(\displaystyle \lim_{ x \to a }g(x) = 0\) )になる場合

⇒ 分子の極限値も0( \(\displaystyle \lim_{ x \to a }f(x) = 0\) )になる!

という点ですね。

 

その理由については、上の式変形をしっかりと覚えておいてくださいね(^^)

では、類似問題を解いて理解を深めておきましょう!

練習問題に挑戦!

【問題】(ニューアクションβより)

\(\displaystyle \lim_{ x \to 1 } \frac{x^2+ax+b}{x^2-1} = 2\) のとき、定数\(a,b\) の値を求めよ。

解説&答えはこちら

答え

$$a=2,b=-3$$

\(\displaystyle \lim_{ x \to 1 } (x^2-1) = 0\) となるので、

分子の極限値も0になります。

よって、

$$\begin{eqnarray}\displaystyle \lim_{ x \to 1 } (x^2+ax+b) &=& 0\\[5pt]1+a+b&=&0\\[5pt]b=-a-1 \end{eqnarray}$$

$$\begin{eqnarray}\frac{2+a}{2}&=&2\\[5pt]2+a&=&4\\[5pt]a&=&2 \end{eqnarray}$$

\(a=2\) を \(b=-a-1\)に代入すると、

\(b=-2-1=-3\) となります。

 

まとめ!

お疲れ様でした!

今回の問題では、分子の極限値が0になることを利用する。

これが最大のポイントでしたね。

 

なぜ分母の極限値が0になると、分子の極限値も0になるのか。

これについては、

 

こちらの式変形を理解しておけば大丈夫ですね!

 

高校入試で使える公式集をプレゼント!


 
高校入試で使える公式をまとめた教材を作成しました!
 
定期テスト、入試で高得点を取るためには絶対に知っておきたいものばかりを集めています。
学校では教えてくれないような公式もありますよ(/・ω・)/

これは知らないと損をするかも…!?
 
無料の中学生メルマガ講座にご登録いただいた方に、
高校入試で使える公式集をプレゼントさせていただいております。
 
こちらから公式集を無料で手に入れちゃってください!

ご登録いただいたメールアドレスに教材を送らせていただきます。
 
 
中学生メルマガ講座では、今回のプレゼントのほか
  • オリジナルの入試教材
  • 入試問題の詳しい解説データ
  • ZOOMを使った個別指導


などのプレゼント企画をやっております。
 
登録は1分もあれば完了します。
ぜひ、こちらから中学生メルマガ講座に登録してみてくださいね(^^)




数スタの運営をしている小田です。
数学の指導歴11年。最近ではオンラインで個別指導をさせてもらっています。  >> 詳しいプロフォールはこちら
数学のニガテを一緒に解決しよう!イチから丁寧に解説するぞ!をモットーに数スタのサイトを作成しました。おかげさまで月30万人の方にご利用いただいております(^^)

【無料のメルマガ講座】
より詳しい学習解説、限定コンテンツの配信、個別指導のプレゼントなどを行っています。
メルマガ講座

【YouTubeチャンネル】
数学の基礎を丁寧に解説しています! ⇒ 数スタチャンネル

【LINE登録】
メッセージはLINEで受け付けてます(/・ω・)/ ⇒LINE登録





コメントを残す

メールアドレスが公開されることはありません。